Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán cực trị số phức bằng phương pháp hình học giải tích - Nguyễn Hữu Tình

Tài liệu gồm 26 trang được biên soạn bởi thầy Nguyễn Hữu Tình (giáo viên trường THPT chuyên Võ Nguyên Giáp – Quảng Bình) hướng dẫn giải bài toán cực trị số phức bằng phương pháp hình học giải tích, đây là lớp các bài toán vận dụng cao số phức và thường xuất hiện trong đề thi THPT Quốc gia 2018. Trong chương trình Toán THPT, phần Đại số mà cụ thể là phần Số học, ở chương trình lớp 12, học sinh được hoàn thiện hiểu biết của mình về các tập hợp số thông qua việc cung cấp một tập hợp số, gọi là Số phức. Trong chương này, học sinh đã bước đầu làm quen với các phép toán cộng, trừ, nhân, chia, khai căn, lũy thừa; lấy môđun, … các số phức. Bằng cách đặt tương ứng mỗi số phức z = x + yi (x, y ∈ R) với mỗi điểm M(x;y) trên mặt phẳng tọa độ Oxy, ta thấy giữa Đại số và Hình học có mối liên hệ với nhau khá “gần gũi”. Hơn nữa, nhiều bài toán Đại số bên Số phức, khi chuyển sang Hình học, từ những con số khá trừu tượng, bài toán đã được minh họa một cách rất trực quan, sinh động và cũng giải được bằng Hình học với phương pháp rất đẹp. Đặc biệt, trong các kỳ thi Đại học, Cao đẳng và THPT Quốc gia những năm gần đây, việc sử dụng phương pháp Hình học để giải quyết các bài toán về Số phức là một trong những phương pháp khá hay và hiệu quả, đặc biệt là các bài toán về Cực trị trong số phức. Hơn nữa, với những bài toán Hình học theo phương pháp trắc nghiệm, nếu khi biểu diễn được trên giấy thì qua hình ảnh minh họa, ta có thể lựa chọn đáp án một cách dễ dàng. [ads] Tuy nhiên, trong thực tế giảng dạy, việc chuyển từ bài toán Đại số nói chung và Số phức nói riêng sang bài toán Hình học ở nhiều học sinh nói chung còn khá nhiều lúng túng, vì vậy việc giải các bài toán về Số phức gây ra khá nhiều khó khăn cho học sinh. Bài toán Cực trị Số phức thông thường thì có khá nhiều cách lựa chọn để giải như dùng Bất đẳng thức, dùng Khảo sát hàm số … Qua chuyên đề này, tôi muốn gợi ý cho học sinh một lối tư duy vận dụng linh hoạt các phương pháp chuyển đổi từ bài toán Đại số sang Hình học cho học sinh, giúp các em có cái nhìn cụ thể hơn về việc chuyển đổi đó và vận duy tư duy này cho những bài toán khác. Với mục tiêu đó, trong chuyên đề này, tôi chỉ tập trung giải quyết bài toán theo hướng Hình học. Không đặt nặng việc so sánh phương pháp nào nhanh hơn, tối ưu hơn phương pháp nào.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số phức - Nguyễn Hoàng Việt
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4. MỤC LỤC : Chương 4 . SỐ PHỨC VÀ CÁC PHÉP TOÁN 1. §1 – NHẬP MÔN SỐ PHỨC 1. A TÓM TẮT LÝ THUYẾT 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Xác định số phức bằng các phép toán 3. + Dạng 2. Số phức bằng nhau 4. + Dạng 3. Điểm biểu diễn số phức 5. + Dạng 4. Lũy thừa với đơn vị ảo 7. C BÀI TẬP TỰ LUYỆN 9. §2 – PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH 13. A CÁC DẠNG TOÁN THƯỜNG GẶP 13. + Dạng 1. Phương trình bậc nhất 13. + Dạng 2. Phương trình bậc hai với hệ số thực 14. + Dạng 3. Xác định số phức bằng cách giải hệ phương trình 15. B BÀI TẬP TỰ LUYỆN 19. §3 – TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC 22. A CÁC DẠNG TOÁN THƯỜNG GẶP 22. + Dạng 1. Tọa độ điểm biểu diễn của số phức 22. + Dạng 2. Tập hợp điểm biểu diễn số phức là đường thẳng 23. + Dạng 3. Tập hợp điểm biểu diễn số phức là đường tròn 24. + Dạng 4. Tập hợp điểm biểu diễn số phức là đường Elip 27. + Dạng 5. Một số mô hình khác 28. B BÀI TẬP TỰ LUYỆN 30. §4 – MAX, MIN CỦA MÔ-ĐUN SỐ PHỨC 34. A CÁC DẠNG TOÁN THƯỜNG GẶP 34. + Dạng 1. Tìm max, min bằng phương pháp đại số 34. + Dạng 2. Tìm max, min bằng phương pháp hình học 35. B BÀI TẬP TỰ LUYỆN 41. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 45. A ĐỀ ÔN TẬP SỐ 1 45. B ĐỀ ÔN TẬP SỐ 2 47.
Chuyên đề Toán 12 chủ đề số phức - Lê Quang Xe
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Lê Quang Xe, hướng dẫn giải một số dạng toán điển hình trong chương trình môn Toán lớp 12 chủ đề số phức, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 4. MỤC LỤC : Chương 4. SỐ PHỨC 1. §1 – Xác định các yếu tố cơ bản, biểu diễn hình học 1. A Lý thuyết 1. B Bài tập minh họa 2. Bảng đáp án 7. §2 – Các phép toán số phức 8. A Tóm tắt lý thuyết 8. B Bài tập minh họa 8. Bảng đáp án 20. Bảng đáp án 30. §3 – Bài toán quy về giải phương trình, hệ phương trình 31. A Bài tập minh họa 31. Bảng đáp án 51. §4 – Phương trình bậc hai với hệ số thực 52. A Tóm tắt lý thuyết 52. B Bài tập minh họa 52. Bảng đáp án 64. §5 – Cực trị số phức 65. A Tóm tắt lý thuyết 65. B Ví dụ minh họa 66. Bảng đáp án 81.
Bài giảng giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững các định nghĩa về số phức và các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. + Nắm vững các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Nắm vững các bất đẳng thức cơ bản liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz. Kĩ năng : + Biết thực hiện thành thạo các định nghĩa, các phép toán trên số phức và vận dụng vào giải được một số bài toán liên quan. + Biết thực hiện thành thạo việc chuyển đổi ngôn ngữ số phức sang ngôn ngữ hình học. + Giải thành thạo các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Vận dụng linh hoạt các bất đẳng thức liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz vào giải các bài toán max, min môđun số phức. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. Dạng 2 : Phương pháp đại số.
Bài giảng phương trình bậc hai với hệ số thực
Tài liệu gồm 15 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình bậc hai với hệ số thực, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững cách giải phương trình bậc hai với hệ số thực trên tập số phức. Kĩ năng : + Giải được phương trình bậc hai với hệ số thực trên tập số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng định lý Vi-ét vào giải một số bài toán chứa nhiều biểu thức đối xứng đối với hai nghiệm của phương trình. + Biết cách giải các phương trình quy về phương trình bậc hai đối với hệ số thực. + Vận dụng các kiến thức đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2 : Định lí Vi-ét và ứng dụng. Dạng 3 : Phương trình quy về phương trình bậc hai.