Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2018 - 2019 trường M.V Lômônôxốp - Hà Nội lần 2

Đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội lần 2 mã đề 116 được biên soạn và tổ chức thi trong giai đoạn giữa học kỳ 1, ngoài mục đích kiểm tra chất lượng định kỳ để lấy điểm học tập, đề còn nhằm giúp học sinh ôn tập dần dần để hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019, đề thi có đáp án và lời giải chi tiết. Giới thiệu sơ lược về đề thi: đề gồm 7 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh làm bài trong thời gian 90 phút, đề gồm các câu hỏi có nội dung thuộc chương trình Toán 10 (Tọa độ mặt phẳng Oxy, Công thức lượng giác, Vectơ …), Toán 11 (Tổ hợp và xác suất, Giới hạn, Đạo hàm, Lượng giác, Nhị thức Newton …) và Toán 12 (Hàm số và đồ thị, Mũ và logarit, Khối đa diện và thể tích của chúng …), điều này nhằm phù hợp với những dự đoán ban đầu về cấu trúc đề thi THPTQG năm 2019 môn Toán. [ads] Trích dẫn đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội lần 2 : + Chị Vui có số tiền là 600 triệu đồng, chị muốn gửi tiết kiệm vào ngân hàng Đông Á theo thể thức lãi kép với lãi suất 0,36%/tháng. Hỏi chị Vui phải gửi bao nhiêu năm để tổng số tiền cả vốn và lãi được 884 triệu đồng, biết rằng lãi suất hàng tháng không thay đổi? + Cho hàm số y = f(x) có lim f(x) = 0 khi x → +∞ và lim f(x) = +∞ khi x → -∞. Khẳng định nào sau đây là khẳng định đúng? A. Đồ thị hàm số có một tiệm cận đứng là đường thẳng y = 0. B. Đồ thị hàm số có một tiệm cận ngang là trục hoành. C. Đồ thị hàm số không có tiệm cận ngang. D. Đồ thị hàm số nằm phía trên trục hoành. + Cho khối lăng trụ ABC.A’B’C’, khoảng cách từ C đến BB’ bằng 5, khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng 3 và 4, hình chiếu vuông góc của A lên mp (A’B’C’) là trung điểm H của B’C’ và A Hʹ = 5 . Thể tích khối lăng trụ đã cho bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 đợt 1 cuối năm 2021 - 2022 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT đợt 1 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 28 tháng 05 năm 2022; đề thi có đáp án mã đề Mã đề 122 Câu Mã đề 124 Câu Mã đề 126 Câu Mã đề 128. Trích dẫn đề khảo sát chất lượng Toán 12 đợt 1 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 4 27. Xét điểm M thuộc mặt phẳng toạ độ Oxy sao cho từ M kẻ được ba tiếp tuyến MA MB MC đến mặt cầu S (trong đó A B C là các tiếp điểm) thỏa mãn 0 AMB 60 0 BMC 90 0 CMA 120. Độ dài đoạn OM lớn nhất bằng bao nhiêu? + Trên tập hợp số phức, xét phương trình 2 z z m 2 3 0 (với m là tham số thực). Gọi hai điểm A và B là hai điểm biểu diễn hai nghiệm của phương trình đã cho. Biết rằng ba điểm O A B là ba đỉnh của một tam giác vuông (với O là gốc toạ độ), khẳng định nào dưới đây đúng? + Cho hàm số f x là hàm số đa thức bậc năm. Biết hàm số y f x có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số 3 2 3 2021 2022 f x x m g x có 8 điểm cực trị?
Đề kiểm tra khảo sát Toán 12 năm 2021 - 2022 sở GDĐT Bình Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Thuận (mã đề 021), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2022 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề kiểm tra khảo sát Toán 12 năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 2×2 – 2mx – 1 (m là tham số) và y = x3 + x2 + 3 đạt giá trị nhỏ nhất bằng? + Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AD = 2AB = 2BC và SC vuông góc với mặt phẳng (ABCD). Nếu A(3;0;0), D(0;3;0), S(0;0;3) và C có hoành độ dương thì tung độ của B bằng? + Cho khối trụ (T) có bán kính R và chiều cao h = R2. Gọi A và B là hai điểm lần lượt thuộc hai đường tròn đáy của (T). Nếu góc và khoảng cách giữa đường thẳng AB và trục của (T) lần lượt là 45° và a thì thể tích của (T) bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề khảo sát chất lượng Toán 12 THPT năm 2021 - 2022 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?