Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2020 - 2021 trường THPT Lạc Long Quân - Bến Tre

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Lạc Long Quân – Bến Tre, đề thi gồm 12 câu trắc nghiệm và 06 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Lạc Long Quân – Bến Tre : + Trong mặt phẳng, cho 8 điểm trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối thuộc 8 điểm đã cho. + Cho cấp số nhân (un) có u1 = 3, u4 = 24. Hỏi số 189 là tổng bao nhiêu số hạng đầu của cấp số nhân? + Cho hình chóp S.ABCD với ABCD là hình thang với hai đáy là AD và BC, đáy lớn là AD. Gọi M và N lần lượt là trung điểm của SA và SD. a) Chứng minh MN song song BC. b) Tìm giao tuyến của (SAD) và (SBC). c) Tìm giao điểm của SB và (MCD). d) Xác định thiết diện của hình chóp cắt bởi (MCD).

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Hồng Đức - Đăk Lăk
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Hồng Đức – Đăk Lăk gồm 50 câu hỏi trắc nghiệm khách quan. Trích một số câu trong đề thi: 1. Phương trình cos2x = 1/2 có số nghiệm thuộc khoảng (0;π) là? 2. Có 2 hộp bút chì màu. Hộp thứ nhất có có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là: 3. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;6); B(-1; -4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5) Tìm khẳng định đúng trong các khẳng định sau: A. ABCD là hình thang B. ABCD là hình bình hành C. ABDC là hình bình hành D. Bốn điểm A, B, C, D thẳng hàng
Đề thi HK1 Toán 11 cơ bản năm học 2016 - 2017 trường Vinh Lộc - TT Huế
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường Vinh Lộc – Thừa Thiên Huế gồm 4 mã đề, mỗi đề gồm 40 câu hỏi trắc nghiệm và 2 câu hỏi tự luận. Đề thi dành cho học sinh theo chương trình chuẩn. Trích một số câu trong đề thi: 1. Trong bài thi vấn đáp, giáo viên soạn sẵn 10 câu hỏi trong đó có 7 câu hỏi mức độ dễ và 3 câu hỏi mức độ khó. Xác suất một học sinh chọn ngẫu nhiên 3 câu hỏi mà có ít nhất một câu hỏi khó bằng? 2. Cho tứ diện ABCD sao cho BCD và ACD là các tam giác cân lần lượt tại B và A; AB = AC = CD = a. M là một điểm trên cạnh AC với AM = x (0 < x < a). (α ) là mặt phẳng qua M song song với AB và CD. Mặt phẳng (α ) cắt tứ diện ABCD theo thiết diện là hình chữ nhật MNPQ (N, P, Q lần lượt nằm trên các cạnh BC, BD, AD). Giá trị của x theo a để diện tích thiết diện MNPQ lớn nhất là: 3. Giải phương trình: sin2x – cos2x = 3sinx + cosx − 2
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường chuyên Hạ Long - Quảng Ninh
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường chuyên Hạ Long – Quảng Ninh gồm 50 câu hỏi trắc nghiệm khách quan. Đề thi dành cho học sinh theo chương trình chuẩn. Trích một số bài toán trong đề thi: + Cho 6 chữ số 2;3;4;5;6;7. Từ các chữ số trên có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1; G2 lần lượt là trọng tâm của tam giác ABC và SBC. Trong các mệnh đề sau, mệnh đề nào SAI? A. G1G2 // (SAD) B. G1G2 và SA không có điểm chung C. G1G2 //(SAB) D. G1G2 và SA là hai đường thẳng chéo nhau + Trong một bài thi trắc nghiệm khách quan có 10 câu. Mỗi câu có 4 phương án trả lời, trong đó chỉ có một câu trả lời đúng. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời. Tính xác suất để học sinh đó trả lời đúng từ 9 câu trở lên.
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường Nguyễn Thị Minh Khai - TP.HCM
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường Nguyễn Thị Minh Khai – TP.HCM gồm 6 câu hỏi tự luận, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Lớp 11A có 15 học sinh nam và 25 học sinh nữ. Lớp 11B có 12 học sinh nam và 18 học sinh nữ. Trường chọn ngẫu nhiên từ mỗi lớp ra 2 học sinh ñể tham gia vào đội nhảy cổ động. Gọi A là biến cố “Trong 4 học sinh ñược chọn có 2 nam và 2 nữ”. Hãy tính xác suất của biến cố A? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung ñiểm của SC và G là trọng tâm tam giác ABC. a/ Tìm giao điểm I của AM và mặt phẳng (SBD). Chứng minh I là trọng tâm tam giác SBD. b/ Chứng minh IG song song với mặt phẳng (SAB). c/ Mặt phẳng (P) chứa AM và song song với BD cắt SB, SD lần lượt tại hai điểm E và F. Tìm thiết diện của mặt phẳng (P) và hình chóp S.ABCD. d/ Gọi K là giao điểm của ME và CD, J là giao điểm của MF và CD. Chứng minh ba điểm K, A, J nằm trên một đường thẳng song song với EF. Tính tỉ số EF/KJ