Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG lớp 12 môn Toán cấp trường năm 2019 2020 THPT chuyên Nguyễn Trãi Hải Dương

Nội dung Đề chọn HSG lớp 12 môn Toán cấp trường năm 2019 2020 THPT chuyên Nguyễn Trãi Hải Dương Bản PDF Ngày 07 tháng 09 năm 2019, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 cấp trường năm học 2019 – 2020. Đề chọn HSG Toán lớp 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề chọn HSG Toán lớp 12 cấp trường năm 2019 – 2020 THPT chuyên Nguyễn Trãi – Hải Dương : + Điền vào mỗi ô của bảng vuông 7 x 7 các số tự nhiên từ 1 đến 49 như hình vẽ. Mỗi lần, được phép chọn 1 ô của bảng và đồng thời tăng số trong ô đó thêm 1 rồi giảm mỗi số trong hai ô nào đó kề với nó đi 1, hoặc giảm số trong ô đó đi 1 và tăng mỗi số trong hai ô kề với nó thêm 1 (hai ô kề nhau là hai ô chung cạnh). Hỏi có thể đưa tất cả các số trong bảng về bằng nhau sau một số hữu hạn bước được hay không? [ads] + Cho tam giác ABC nội tiếp đường tròn (O). Một đường tròn (K) qua B và C cắt các đoạn thẳng CA và AB lần lượt tại E và F. Gọi BE cắt CF tại H. M là trung điểm BC và tiếp tuyến tại B và C của đường tròn ngoại tiếp tam giác BHC cắt nhau tại I. Gọi S là hình chiếu của A trên IH và D là giao của IH với BC. Chứng minh rằng đường tròn ngoại tiếp tam giác SMD tiếp xúc với đường tròn (O). + Cho dãy số (an) thỏa mãn đồng thời hai điều kiện 3a_n+1≥ a_n và 6a_n+1 + a_n-1 ≤ 5a_n với mọi n ≥ 2 và n thuộc N. Chứng minh rằng dãy (an) có giới hạn hữu hạn và tìm giới hạn đó.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi môn Toán 12 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề thi học sinh giỏi môn Toán 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG Toán 12 dự thi Quốc gia năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi thành lập đội tuyển HSG Toán 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.