Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội

Nội dung Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Ngày Thứ Năm 22 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội đã tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020-2021. Đề thi Olympic Toán lớp 8 cấp huyện năm 2020-2021 phòng GD&ĐT Ba Vì - Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Cụ thể một số câu hỏi trong đề thi: Tìm các số nguyên x, y thỏa mãn: xy - 4 = 2x + 3y. Tìm các số nguyên x sao cho A = x(x - 1)(x - 7)(x - 8) là một số chính phương. Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vẽ tia Cx sao cho BCX = 1/2.BAC. Cx cắt AD tại E; I là trung điểm DE. Chứng minh rằng : a) ΔABD đồng dạng với ΔCED. b) AE2 > AB.AC. c) 4AB.AC = 4AI2 – DE2. d) Trung trực của BC đi qua E. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho a, b, c là 3 số dương thỏa mãn: 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 2. Tìm giá trị lớn nhất của biểu thức Q = abc.
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. a) Chứng minh DE + DF = 2AM. b) Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh N là trung điểm của EF. c) Kí hiệu SX là diện tích của hình X. Chứng minh S2 FDC >= 16.SAMC.SFNA. + Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Biết rằng: Trong số thí sinh không giải được bài A thì số thí sinh đã giải được bài B nhiều gấp hai lần số thí sinh đã giải được bài C. Số học sinh chỉ giải được bài A nhiều hơn số thí sinh giải được bài A và thêm bài khác là một người. Số thí sinh chỉ giải được bài A bằng số thí sinh chỉ giải được bài B cộng với số thí sinh chỉ giải được bài C. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? + Cho A = n6 + 10n4 + n3 + 98n – 6n5 – 26 và B = 1 + n3 – n. Chứng minh với mọi n thuộc Z thì thương của phép chia A cho B là bội số của 6.
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. + Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH. a) Chứng minh rằng AB2/AC2 = BH/CH. b) Kẻ AD là tia phân giác của góc BAH (D thuộc BH). Chứng minh rằng: DH.DC = BD.HC. c) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh rằng CE // AD. + Cho hai số x, y thỏa mãn x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức: M = x3 + y3.
Đề khảo sát HSG Toán 8 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho hình vuông ABCD có cạnh bằng a, biết hai đường chéo cắt nhau tại O. Lấy điểm I thuộc cạnh AB, điểm M thuộc cạnh BC sao cho IOM = 90 độ (I và M không trùng với các đỉnh của hình vuông). Gọi N là giao điểm của AM và CD, K là giao điểm của OM và BN. 1) Chứng minh ΔBIO = ΔCMO và tính diện tích tứ giác BIOM theo a. 2) Chứng minh BKM = BCO. 3) Chứng minh 1/CD^2 = 1/AM^2 + 1/AN^2. + Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Tính giá trị biểu thức AB/AC + AD/AE. + Tính giá trị của biểu thức P biết x, y thỏa mãn đẳng thức.