Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức

Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng
Tài liệu gồm 139 trang, tuyển chọn và hướng dẫn giải các bài toán liên quan đến việc chứng minh đẳng thức, bất đẳng thức hình học phẳng, giúp học sinh học tốt chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. Bài toán 1. Sử dụng định lí Pythagore để chứng minh đẳng thức, bất đẳng thức hình học. Bài toán 2. Sử dụng tam giác bằng nhau để chứng minh đẳng thức hình học. Bài toán 3. Sử dụng quan hệ góc và cạnh đối diện, quan hệ đường vuông góc và đường xiên, quan hệ đường xiên và hình chiếu, bất đẳng thức tam giác. Bài toán 4. Sử dụng định lí Thales (Ta-Lét) và tính chất đường phân giác của tam giác để chứng minh đẳng thức hình học. Bài toán 5. Sử dụng phương pháp diện tích để chứng minh đẳng thức và bất đẳng thức hình học. Bài toán 6. Sử dụng phương pháp về hình bình hành để chứng minh đẳng thức và bất đẳng thức hình học. Bài toán 7. Sử dụng tam giác đồng dạng để chứng minh đẳng thức, bất đẳng thức hình học. Bài toán 8. Sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông để chứng minh đẳng thức và bất đẳng thức hình học. Bài toán 9. Sử dụng định lí Van Aubel để chứng minh đẳng thức và bất đẳng thức hình học. Một số bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng trích trong các đề thi tuyển sinh vào lớp 10 môn Toán.
Bí quyết giải toán số học THCS theo chủ đề
Tài liệu gồm 525 trang, được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, trình bày bí quyết giải toán số học THCS theo chủ đề, một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán 6 / 7 / 8 / 9 và đề tuyển sinh vào lớp 10 môn Toán. Phần I . CÁC CHỦ ĐỀ SỐ HỌC THCS. Chủ đề 1 . Các bài toán về ước và bội. 1. Các bài toán liên quan tới số ước của một số. 2. Tìm số nguyên n thỏa mãn điều kiện chia hết. 3. Tìm số biết ƯCLN của chúng. 4. Tìm số biết BCNN và ƯCLN. 5. Các bài toán về các số nguyên tố cùng nhau. 6. Các bài toán về phân số tối giản. 7. Tìm ƯCLN của các biểu thức. 8. Liên hệ phép chia có dư, phép chia hết, ƯCLN, BCNN. 9. Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. Chủ đề 2 . Các bài toán về quan hệ chia hết. 1. Sử dụng tính chất n số tự nhiên liên tiếp có một và chỉ một số chia hết cho n. 2. Sử dụng phương pháp phân tích thành nhân tử. 3. Sử dụng phương pháp tách tổng. 4. Sử dụng hằng đẳng thức. 5. Sử dụng phương pháp xét số dư. 6. Sử dụng phương pháp phản chứng. 7. Sử dụng phương pháp quy nạp. 8. Sử dụng nguyên lý Dirichlet. 9. Xét đồng dư. 10. Tìm điều kiện của biến để biểu thức chia hết. 11. Các bài toán cấu tạo số liên quan đến tính chia hết. 12. Các bài chia hết sử dụng định lý Fermat. 13. Các bài toán chia hết liên quan đến đa thức. Chủ đề 3 . Các bài toán về số nguyên tố, hợp số. 1. Chứng minh một số là số nguyên tố hay hợp số. 2. Chứng minh các bài toán liên quan đến tính chất số nguyên tố. 3. Tìm số nguyên tố thỏa mãn điều kiện nào đó. 4. Nhận biết số nguyên tố, sự phân bố số nguyên tố. 5. Chứng minh có vô số nguyên tố có dạng ax + b với (a;b) = 1. 6. Sử dụng nguyên lý Dirich trong bài toán số nguyên tố. 7. Áp dụng định lý Fermat. Chủ đề 4 . Các bài toán về số chính phương. 1. Chứng minh một số là số chính phương hay là tổng nhiều số chính phương. 2. Chứng minh một số không phải là số chính phương. 3. Tìm điều kiện của biến để một số là số chính phương. 4. Tìm số chính phương. Chủ đề 5 . Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 1. Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 2. Sử dụng đồng dư thức trong tìm số dư. 3. Sử dụng đồng dư thức trong tìm điều kiện của biến để chia hết. 4. Sử dụng đồng dư thức trong tìm một chữ số tận cùng. 5. Sử dụng đồng dư thức trong tìm hai chữ số tận cùng. 6. Sử dụng đồng dư thức trong các bài toán về số chính phương. 7. Sử dụng đồng dư thức trong các bài toán số nguyên tố, hợp số. 8. Sử dụng đồng dư thức trong phương trình nghiệm nguyên. 9. Sử dụng các định lý. Chủ đề 6 . Phương trình nghiệm nguyên. 1. Phát hiện tính chia hết của một ẩn. 2. Phương pháp đưa về phương trình ước số. 3. Phương pháp tách ra các giá trị nguyên. 4. Phương pháp sử dụng tính chẵn, lẻ và số dư từng vế. 5. Phương pháp sử dụng bất đẳng thức. 6. Phương pháp dùng tính chất của số chính phương. 7. Phương pháp lùi vô hạn, nguyên tắc cực hạn. Chủ đề 7 . Phần nguyên trong số học. 1. Phần nguyên của một số hoặc một biểu thức. 2. Chứng minh một đẳng thức chứa phần nguyên. 3. Phương trình phần nguyên. 4. Bất phương trình phần nguyên. 5. Phần nguyên trong chứng minh một số dạng toán số học. 6. Chứng minh bất đẳng thức chứa phần nguyên. Chủ đề 8 . Nguyên lý Dirichlet trong số học. 1. Chứng minh sự tồn tại chia hết. 2. Các bài toán về tính chất phần tử trong tập hợp. 3. Bài toán liên quan đến bảng ô vuông. 4. Bài toán liên quan đến thực tế. 5. Bài toán liên quan đến sự sắp xếp. 6. Vậng dụng nguyên lý Dirichlet trong các bài toán hình học. Chủ đề 9 . Các bài toán sử dụng nguyên lý cực hạn. Chủ đề 10 . Nguyên lý bất biến trong giải toán. Phần II . HƯỚNG DẪN GIẢI – ĐÁP SỐ.
Bí quyết chứng minh bất đẳng thức - Nguyễn Quốc Bảo
Tài liệu gồm 327 trang, được biên soạn bởi tác giả Nguyễn Quốc Bảo, hướng dẫn các phương pháp chứng minh bất đẳng thức, đây là dạng toán khó, thường xuất hiện trong các đề thi chọn học sinh giỏi Toán 8 / Toán 9, đề tuyển sinh lớp 10 môn Toán. Phần I . CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC. Chủ đề 1 Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2 Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3 Phương pháp phản chứng trong chứng minh bất đẳng thức . Chủ đề 4 Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Chủ đề 5 Sử dụng tính chất tỷ số trong chứng minh bất đẳng thức. Chủ đề 6 Phương pháp làm trội, làm giảm trong chứng minh bất đẳng thức. Chủ đề 7 Phương pháp quy nạp toán học trong chứng minh bất đẳng thức. Chủ đề 8 Chứng minh bất đẳng thức dãy số bằng bất đẳng thức cổ điển. Chủ đề 9 Sử dụng bất đẳng thức AM-GM (Cauchy). Chủ đề 10 Sử dụng bất đẳng thức Bunyakovsky. [ads] Chủ đề 11 Bất đẳng thức có biến trên một đoạn. Chủ đề 12 Kĩ thuật đồng bậc hóa trong chứng minh bất đẳng thức. Chủ đề 13 Kĩ thuật chuẩn hóa trong chứng minh bất đẳng thức. Chủ đề 14 Sử dụng đẳng thức trong chứng minh bất đẳng thức. Chủ đề 15 Sử dụng nguyên lý Dirichlet trong chứng minh bất đẳng thức. Chủ đề 16 Sắp xếp biến trong chứng minh bất đẳng thức. Chủ đề 17 Sử dụng hàm số bậc nhất trong chứng minh bất đẳng thức. Chủ đề 18 Phương pháp dồn biến trong chứng minh bất đẳng thức. Chủ đề 19 Phương pháp hình học trong chứng minh bất đẳng thức. Chủ đề 20 Phương pháp đổi biến trong chứng minh bất đẳng thức. Chủ đề 21 Cực trị biểu thức có dấu giá trị tuyệt đối. Chủ đề 22 Phương pháp hệ số bất định trong chứng minh bất đẳng thức. Phần II . TUYỂN CHỌN CÁC BÀI TOÁN BẤT ĐẲNG THỨC HAY THCS.
Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo
Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, hướng dẫn phương pháp giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức, giúp bồi dưỡng học sinh giỏi môn Toán 8 và Toán 9, ôn thi vào lớp 10 môn Toán. Mục lục tài liệu chuyên đề chứng minh đẳng thức và tính giá trị biểu thức – Nguyễn Quốc Bảo: Chủ đề I . CHỨNG MINH ĐẲNG THỨC. Dạng 1: Sử dụng phép biến đổi thương đương. Dạng 2: Sử dụng hằng đẳng thức quen biết. Dạng 3: Sử dụng phương pháp đổi biến. Dạng 4: Sử dụng bất đẳng thức. Dạng 5: Sử dụng lượng liên hợp. Dạng 6: Chứng minh có một số bằng hằng số cho trước. Dạng 7: Sử dụng Vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Chủ đề II . TÍNH GIÁ TRỊ BIỂU THỨC MỘT BIẾN. Dạng 1: Tính giá trị biểu thức chứa đa thức. Dạng 2: Tính giá trị biểu thức chứa căn thức. Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình. Bài tập vận dụng. Hướng dẫn giải. [ads] Chủ đề III . TÍNH GIÁ TRỊ BIỂU THỨC NHIỀU BIẾN CÓ ĐIỀU KIỆN. Dạng 1: Sử dụng phương pháp phân tích. Dạng 2: Sử dụng phương pháp hệ số bất định. Dạng 3: Sử dụng phương pháp hình học. Dạng 4: Sử dụng Vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Mỗi chủ đề có ba phần: Phần 1. Kiến thức cần nhớ: Phần này tóm tắt những kiến thức cơ bản, những kiến thức bổ sung cần thiết để làm cơ sở giải các bài tập thuộc các dạng của chuyên đề. Phần 2. Một số ví dụ: Phần này đưa ra những ví dụ chọn lọc, tiêu biểu chứa đựng những kĩ năng và phương pháp luận mà chương trình đòi hỏi. Phần 3. Bài tập vận dụng: Phần này tác giả đưa ra một hệ thống các bài tập được phân loại theo các dạng toán, tăng dần độ khó cho học sinh khá giỏi. Có những bài tập được trích từ các đề thi học sinh giỏi Toán và đề vào lớp 10 chuyên Toán.