Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình logarit có chứa tham số

Tài liệu gồm 25 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán phương trình logarit có chứa tham số, được phát triển dựa trên câu 43 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu phương trình logarit có chứa tham số: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT Ta thường sử dụng các phương pháp sau: + Phương pháp 1. Phương pháp đưa về cùng cơ số. + Phương pháp 2. Phương pháp đặt ẩn phụ. + Phương pháp 3. Phương pháp hàm số. [ads] B. BÀI TẬP MẪU 1. Bài toán Cho phương trình $\log _2^2(2x) – (m + 2){\log _2}x + m – 2 = 0$ ($m$ là tham số thực). Tập hợp tất cả các giá trị của $m$ để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn $[1;2]$ là? 2. Phân tích hướng dẫn giải 1. Dạng toán: Đây là dạng toán tìm điều kiện của tham số để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. 2. Hướng giải: + Bước 1: Viết lại phương trình logarit về dạng phương trình bậc hai đối với 1 biểu thức logarit. + Bước 2: Đặt ẩn phụ là biểu thức logarit và tìm điều kiện cho ẩn phụ. + Bước 3: Tìm điều kiện cho phương trình ẩn phụ. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số Mũ và Logarit - Bùi Quỹ
Chuyên đề hàm số Mũ và Logarit – Bùi Quỹ
Hàm số lũy thừa - mũ và logarit -Trần Sĩ Tùng
Hàm số lũy thừa – mũ và logarit -Trần Sĩ Tùng
Một số bài toán phương trình logarit khác cơ số - Huỳnh Đức Khánh - Đại học Quy Nhơn
Phương trình logarit với cơ số khác nhau luôn là vấn đề gây khó dễ cho học sinh khi gặp phải trong các đề thi. Học sinh thường lúng túng khi biến đổi, gặp khó khăn để đưa về cùng cơ số hoặc đưa về các phương trình cơ bản. Tôi viết tài liệu xin đóng góp vài bài mẫu về vấn đề này, bao gồm các phương pháp: + Đổi cơ số + Đặt ẩn phụ để đưa về phương trình mũ + Biến đổi tương đương + Đánh giá hai vế
Một số phương pháp giải phương trình mũ và logarit - THPT chuyên Quảng Bình
Một số phương pháp giải phương trình mũ và logarit – THPT chuyên Quảng Bình