Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội : + Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng: a) Tứ giác OBME nội tiếp. b) 2 2 CD CE CO R. c) M luôn di chuyển trên một đường tròn cố định. + Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương. + Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hải Phòng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020-2021 sở GD ĐT Hải Phòng Đề thi tuyển sinh THPT môn Toán năm 2020-2021 sở GD ĐT Hải Phòng Vào ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo Hải Phòng đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh này bao gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề thi cung cấp đáp án và lời giải chi tiết cho học sinh tham gia. Trích dẫn một trong các bài toán trong đề tuyển sinh môn Toán lớp 10 năm 2020-2021 sở GD&ĐT Hải Phòng: - Một nhà máy cần sản xuất 2100 thùng nước sát khuẩn theo kế hoạch trong thời gian quy định. Nhưng vì nhu cầu tăng cường phòng chống dịch COVID-19, nhà máy đã sản xuất thêm 35 thùng nước sát khuẩn mỗi ngày. Kết quả, công việc hoàn thành sớm hơn 3 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy cần sản xuất bao nhiêu thùng nước sát khuẩn? Một trong các bài toán khác đề cũng đề cập đến vấn đề hình học và giải toán với biểu thức. Học sinh sẽ phải chứng minh và giải thích các bước logic để giải quyết vấn đề. Đây là cơ hội để họ thể hiện kiến thức và kỹ năng Toán của mình trong kỳ thi này. Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Hải Phòng không chỉ kiểm tra kiến thức mà còn khuyến khích học sinh tư duy logic, sáng tạo và thực hành kỹ năng giải quyết vấn đề. Điều này giúp họ phát triển năng lực Toán và chuẩn bị tốt cho hành trình học tập phía trước.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Sóc Trăng Ngày 02 tháng 08 năm 2020, sở Giáo dục và Đào tạo tỉnh Sóc Trăng đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Cho chiếc nón lá có đường kính và chiều cao nhất định, tính diện tích xung quanh của chiếc nón đó. 2. Một công ty sản xuất khẩu trang trong bối cảnh đại dịch COVID – 19. Hỏi sau khi đóng cửa một xưởng, công ty còn lại sẽ sản xuất đủ số lượng khẩu trang theo hợp đồng sau bao nhiêu ngày? 3. Chứng minh tính chất của một tứ giác nội tiếp, tính tích MB.MD theo AC trong một tam giác vuông. Đề tuyển sinh THPT môn Toán năm 2020 – 2021 sở GD ĐT Sóc Trăng là một cơ hội để học sinh thử sức và cải thiện kiến thức của mình trong môn Toán. Hy vọng rằng các em sẽ có kết quả tốt trong kỳ thi này.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Vào ngày thi, học sinh sẽ phải làm bài thi môn Toán trong thời gian 120 phút. Đề thi bao gồm 5 bài toán dạng tự luận, với đáp án và lời giải chi tiết được cung cấp sau khi kết thúc bài thi. Một trong những bài toán trong đề thi là về việc tính quãng đường của một người đi xe đạp từ điểm A đến điểm B và trở lại. Bài toán đòi hỏi học sinh tìm ra vận tốc khi lên dốc và xuống dốc, sau đó dựa vào thời gian trên để tính toán quãng đường AB. Bài toán khác đưa ra một bài toán về tam giác nội tiếp trong đường tròn, yêu cầu học sinh chứng minh các tính chất và tìm diện tích của tam giác. Các phần bài toán được thiết kế để thách thức tư duy logic và khả năng giải quyết vấn đề của thí sinh. Các bài toán trong đề thi không chỉ giúp học sinh ôn tập kiến thức môn Toán mà còn giúp phát triển kỹ năng phân tích, logic và giải quyết vấn đề của học sinh. Đây là cơ hội để các thí sinh thể hiện khả năng và kiến thức của mình trong môn học này.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hòa Bình Vào thứ ... ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hòa Bình đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề tuyển sinh lớp 10 THPT môn Toán cho năm 2020 - 2021 từ sở GD&ĐT Hòa Bình bao gồm một trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đề có đáp án và lời giải chi tiết. Trích dẫn một số bài toán từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Hòa Bình: Một chiếc ti vi giảm giá hai lần, mỗi lần giảm giá 10% so với giá đang bán, sau khi giảm giá hai lần thì giá còn lại là 16,200,000 đồng. Hỏi giá bán ban đầu của chiếc ti vi là bao nhiêu? Cho tam giác nhọn ABC (AB khác AC) có các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh rằng: Tứ giác AEHF nội tiếp. 2) Chứng minh rằng: ADE = ADF. 3) Chứng minh rằng: Đường tròn ngoại tiếp tam giác EDF đi qua trung điểm M của cạnh BC. Cho tam giác ABC vuông tại A, có AB = 6cm, góc ABC = 60 độ. Tính chu vi tam giác. Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD ĐT Hòa Bình cung cấp cho thí sinh những câu hỏi thú vị và bổ ích để đánh giá kiến thức và kỹ năng của họ. Hãy cùng chúng tôi chuẩn bị và tự tin vượt qua kỳ thi tuyển sinh sắp tới!