Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập vận dụng min - max hình học không gian có lời giải chi tiết

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.

Nguồn: toanmath.com

Đọc Sách

209 bài tập trắc nghiệm khối tròn xoay có đáp án - Lê Hoài Sơn
Tài liệu gồm 17 trang tuyển tập 209 bài tập trắc nghiệm khối tròn xoay có đáp án, tài liệu được biên soạn bởi thầy Lê Hoài Sơn. Trích dẫn tài liệu : + Cho ba điểm phân biệt A, B, C cùng nằm trên một mặt cầu, biết rằng góc ACB = 90 độ. Trong các khẳng định sau, khẳng định nào đúng ? A. Luôn có một đường tròn nằm trên mặt cầu ngoại tiếp tam giác ABC B. Tam giác ABC vuông cân tại C C. Mặt phẳng (ABC) cắt mặt cầu theo giao tuyến là một đường tròn lớn D. AB là một đường kính của mặt cầu [ads] + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Bất kì một hình tứ diện nào cũng có mặt cầu ngoại tiếp B. Bất kì một hình hộp chữ nhật nào cũng có một mặt cầu ngoại tiếp C. Bất kì một hình hộp nào cũng có một mặt cầu ngoại tiếp D. Bất kì một hình chóp đều nào cũng có một mặt cầu ngoại tiếp + Diện tích xung quanh của hình trụ bằng bao nhiêu? A. Hai lần tích của chu vi đáy với độ dài đường cao của nó B. Một nửa tích của chu vi đáy với độ dài đường sinh của nó C. Tích của chu vi đáy với độ dài đường sinh của nó D. Một nửa tích của chu vi đáy với độ dài đường cao của nó
Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Bài tập trắc nghiệm mặt cầu - hình cầu - khối cầu - Nguyễn Văn Huy
Tài liệu gồm 10 trang với 44 bài toán trắc nghiệm về mặt cầu – hình cầu và khối cầu, các bài toán có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Cho mặt cầu (S) có tâm I bán kính R = 5 và mặt phẳng (P) cắt (S) theo một đường tròn (C) có bán kính r = 3. Kết luận nào sau đây là sai? A. Tâm của (C) là hình chiếu vuông góc của I trên (P) B. (C) là giao tuyến của (S) và (P) C. Khoảng cách từ I đến (P) bằng 4 D. (C) là đường tròn giao tuyến lớn nhất của (P) và (S) [ads] + Trong các khẳng định sau, khẳng định nào sai? A. Mặt phẳng (P) tiếp xúc với mặt cầu (S) tâm O tại điểm H thì OH là khoảng cách ngắn nhất từ O đến một điểm bất kỳ nằm trong mặt phẳng (P) B. Chỉ có duy nhất hai mặt phẳng vuông góc với mặt phẳng cho trước và tiếp xúc với mặt cầu (S) C. Mặt phẳng cắt mặt cầu (S) theo đường tròn (C), tâm của đường tròn (C) là hình chiếu của tâm mặt cầu (S) xuống mặt phẳng (P) D. Tại điểm H nằm trên mặt cầu chỉ có 1 tiếp tuyến duy nhất + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Bất kì một hình tứ diện nào cũng có mặt cầu ngoại tiếp B. Bất kì một hình hộp chữ nhật nào cũng có một mặt cầu ngoại tiếp C. Bất kì một hình hộp nào cũng có một mặt cầu ngoại tiếp D. Bất kì một hình chóp đều nào cũng có một mặt cầu ngoại tiếp
Bài tập trắc nghiệm chuyên đề khối đa diện, mặt nón - trụ - cầu - Đặng Việt Đông
Tài liệu gồm 62 trang với các bài toán trắc nghiệm thuộc chuyên đề khối đa diện và mặt cầu – mặt nón – mặt trụ, có đáp án. Nội dung tài liệu : ĐA DIỆN, ĐA DIỆN LỒI VÀ ĐA DIỆN ĐỀU + Nhận biết, định nghĩa và tính chất đa diện, đa diện lồi và đa diện đều + Phân chia và lắp ghép khối đa diện + Phép dời hình và sự bằng nhau giữa các khối đa diện THỂ TÍCH HÌNH CHÓP + Công thức tính thể tích khối chóp + Cách xác định chiều cao một số dạng khối chóp thường gặp trong các bài toán TỈ SỐ THỂ TÍCH KHOẢNG CÁCH Khoảng cách từ một điểm đến một đường thẳng, từ một điểm đến một mặt phẳng, từ một đường thẳng đến một mặt phẳng song song với nó, giữa hai mặt phẳng song song, giữa hai đường thẳng chéo nhau [ads] GÓC Góc giữa hai đường thẳng, giữa đường thẳng với mặt phẳng, giữa hai mặt phẳng THỂ TÍCH LĂNG TRỤ Thể tích khối lăng trụ, khối hộp chữ nhật, khối lập phương HÌNH NÓN – KHỐI NÓN Mặt nón tròn xoay và hình nón tròn xoay. Công thức diện tích và thể tích của hình nón HÌNH TRỤ – KHỐI TRỤ Mặt trụ tròn xoay và hình trụ tròn xoay. Công thức tính diện tích và thể tích của hình trụ MẶT CẦU – KHỐI CẦU + Vị trí tương đối giữa mặt cầu và mặt phẳng, giữa mặt cầu và đường thẳng + Mặt cầu ngoại tiếp – nội tiếp khối đa diện