Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn dãy số, giới hạn hàm số và hàm số liên tục - Diệp Tuân

Tài liệu gồm 156 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các bài tập chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục (Đại số và Giải tích 11 chương 4). Khái quát nội dung tài liệu giới hạn dãy số, giới hạn hàm số và hàm số liên tục – Diệp Tuân: BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Chứng minh dãy số có giới hạn là 0. Dạng 2. Dùng định nghĩa chứng minh dãy số (un) có giới hạn hữu hạn L. Dạng 3. Tìm giới hạn của dãy (un) có giới hạn hữu hạn bằng quy tắc, định lý. + Bài toán 1. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (với P(n) và Q(n) là hai đa thức). + Bài toán 2. Dãy (un) là một phân thức dạng un = P(n)/Q(n) (với P(n) và Q(n) là các biểu thức chứa căn của n). + Bài toán 3. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n) và Q(n) là các biểu thức chứa hàm mũ). Dạng 4. Tính giới hạn mà dãy (un) cho dưới dạng công thức truy hồi. Dạng 5. Tính giới hạn dựa vào định lý kẹp. Dạng 6. Giới hạn có kết quả là vô cực. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Tìm giới hạn của hàm số tại một điểm bằng quy tắc, định lý. + Bài toán 1. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là đa thức theo biến x. + Bài toán 2. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là các biểu thức có chứa căn thức theo x. + Bài toán 3. Thêm bớt số hạng hoặc một biểu thức vắng để khử được dạng vô định (khử căn bậc hai và bậc ba). Dạng 3. Tìm giới hạn của hàm số khi x → ±∞. + Bài toán 1. Giới hạn hữu hạn lim P(x).Q(x) với lim P(x) = L và lim Q(x) = ±∞. + Bài toán 2. Giới hạn hữu hạn hữu tỉ lim P(x)/Q(x) (bậc tử bé hơn hoặc bằng bậc mẫu). + Bài toán 3. Giới hạn vô cực lim P(x)/Q(x) (bậc tử lớn hơn bậc mẫu). + Bài toán 4. Giới hạn vô cực dạng vô định ∞ – ∞. + Bài toán 5. Giới hạn vô cực dạng vô định 0.∞. Dạng 4. Tìm giới hạn của hàm số các hàm đặc biệt. [ads] BÀI 3 . GIỚI HẠN MỘT BÊN. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Chứng minh sự tồn tại của giới hạn. BÀI 4 . HÀM SỐ LIÊN TỤC. Dạng 1. Xét tính liên tục của hàm số tại một điểm. + Bài toán 1. Cho hàm số f(x) = f1(x) khi x khác x0 và f(x) = f2(x) khi x = x0. + Bài toán 2. Cho hàm số f(x) = f1(x) khi x < x0 và f(x) = f2(x) khi x ≥ x0. Dạng 2. Xét tính liên tục của hàm số trên R. Dạng 3. Chứng minh phương trình có nghiệm. + Bài toán 1. Cho phương trình f(x) = 0. Chứng minh phương trình có nghiệm. + Bài toán 2. Chứng minh phương trình có chứa tham số m luôn có nghiệm với mọi m. + Bài toán 3. Chứng minh phương trình có chứa tham số m luôn có nghiệm dương hoặc nghiệm âm với mọi m.

Nguồn: toanmath.com

Đọc Sách

Bài giảng giới hạn, hàm số liên tục Toán 11 Kết Nối Tri Thức Với Cuộc Sống
Tài liệu gồm 130 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm tóm tắt lý thuyết, các dạng toán thường gặp, bài tập rèn luyện và bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 5 . GIỚI HẠN, HÀM SỐ LIÊN TỤC 2. Bài 1 . GIỚI HẠN CỦA DÃY SỐ 2. A TÓM TẮT LÍ THUYẾT 2. B CÁC DẠNG TOÁN THƯỜNG GẶP 5. + Dạng 1. Phương pháp đặt thừa số chung (lim hữu hạn) 5. + Dạng 2. Phương pháp lượng liên hợp (lim hữu hạn) 6. + Dạng 3. Giới hạn tại vô cực 8. + Dạng 4. Tính tổng của dãy cấp số nhân lùi vô hạn 9. + Dạng 5. Toán thực tế, liên môn liên quan đến giới hạn dãy số 11. C BÀI TẬP RÈN LUYỆN 15. D BÀI TẬP TRẮC NGHIỆM 22. Bài 2 . GIỚI HẠN CỦA HÀM SỐ 33. A TÓM TẮT LÍ THUYẾT 33. B MỘT SỐ DẠNG TOÁN THƯỜNG GẶP 38. + Dạng 1. Thay số trực tiếp 38. + Dạng 2. Phương pháp đặt thừa số chung – kết quả hữu hạn 39. + Dạng 3. Phương pháp đặt thừa số chung – kết quả vô cực 41. + Dạng 4. Phương pháp lượng liên hợp kết quả hữu hạn 42. + Dạng 5. Giới hạn một bên 44. + Dạng 6. Toán thực tế, liên môn về hàm số liên tục 45. C BÀI TẬP RÈN LUYỆN 47. D BÀI TẬP TRẮC NGHIỆM 59. Bài 3 . HÀM SỐ LIÊN TỤC 69. A TÓM TẮT LÝ THUYẾT 69. B CÁC DẠNG TOÁN THƯỜNG GẶP 71. + Dạng 1. Dựa vào đồ thị xét tính liên tục của hàm số tại một điểm, một khoảng 71. + Dạng 2. Hàm số liên tục tại một điểm 73. + Dạng 3. Hàm số liên tục trên khoảng, đoạn 75. C BÀI TẬP RÈN LUYỆN 77. D BÀI TẬP TRẮC NGHIỆM 82. Bài 4 . BÀI TẬP CUỐI CHƯƠNG V 95. A TRẮC NGHIỆM 95. B TỰ LUẬN 105. Bài 5 . BÀI TẬP CUỐI CHƯƠNG V – TRẮC NGHIỆM 114.
Chủ đề giới hạn của dãy số Toán 11 KNTTVCS - Lê Bá Bảo
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, bao gồm tóm tắt lý thuyết, bài tập tự luận và bài tập trắc nghiệm chủ đề giới hạn của dãy số môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS), có đáp án và lời giải chi tiết. CHƯƠNG IV . GIỚI HẠN. HÀM SỐ LIÊN TỤC. Chủ đề 1 : GIỚI HẠN DÃY SỐ. I. TÓM TẮT LÝ THUYẾT 1. Giới hạn hữu hạn của dãy số. 2. Định lí về giới hạn hữu hạn của dãy số. 3. Tổng của cấp số nhân lùi hạn. 4. Giới hạn vô cực của dãy số. II. BÀI TẬP TỰ LUẬN. III. BÀI TẬP TRẮC NGHIỆM. IV. LỜI GIẢI CHI TIẾT.
Bài giảng giới hạn và hàm số liên tục Toán 11 Cánh Diều
Tài liệu gồm 150 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề giới hạn và hàm số liên tục trong chương trình môn Toán 11 Cánh Diều (CD). MỤC LỤC : CHƯƠNG 3 . GIỚI HẠN. HÀM SỐ LIÊN TỤC 4. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 6. Dạng 1. Giới hạn hữu tỉ 6. 1. Phương pháp 6. 2. Các ví dụ rèn luyện kĩ năng 6. Dạng 2. Dãy số chứa căn thức 7. 1. Phương pháp 7. 2. Các ví dụ rèn luyện kĩ năng 8. Dạng 3. Tính giới hạn của dãy số chứa hàm mũ 9. 1. Phương pháp 9. 2. Các ví dụ rèn luyện kĩ năng 9. Dạng 4. Tổng của cấp số nhân lùi vô hạn 10. 1. Phương pháp 10. 2. Các ví dụ rèn luyện kĩ năng 10. Dạng 5. Phương pháp sai phân và quy nạp tính giới hạn 12. 1. Phương pháp 12. 2. Các ví dụ rèn luyện kĩ năng 13. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 16. D. BÀI TẬP TRẮC NGHIỆM 20. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ 43. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 43. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 45. Dạng 1. Dãy số có giới hạn hữu hạn 45. 1. Phương pháp 45. 2. Các ví dụ rèn luyện kĩ năng 45. Dạng 2. Giới hạn tại vô cực 46. 1. Phương pháp 46. 2. Các ví dụ rèn luyện kĩ năng 46. Dạng 3. Giới hạn một bên 49. 1. Phương pháp 49. 2. Các ví dụ rèn luyện kĩ năng 49. Dạng 4. Dạng vô định 0 0 51. 1. Phương pháp 51. 2. Các ví dụ rèn luyện kĩ năng 51. Dạng 5. Dạng vô định 58. 1. Phương pháp 58. 2. Các ví dụ rèn luyện kĩ năng 58. Dạng 6. Dạng vô định 0 62. 1. Phương pháp 62. 2. Các ví dụ rèn luyện kĩ năng 63. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 65. D. BÀI TẬP TRẮC NGHIỆM 67. BÀI 3 . HÀM SỐ LIÊN TỤC 86. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 86. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 86. Dạng 1. Hàm số liên tục tại một điểm 86. 1. Phương pháp 86. 2. Các ví dụ rèn luyện kĩ năng 87. Dạng 2. Hàm số liên tục trên tập xác định 89. 1. Phương pháp 89. 2. Các ví dụ rèn luyện kĩ năng 89. Dạng 3. Số nghiệm của phương trình trên một khoảng 90. 1. Phương pháp 90. 2. Các ví dụ rèn luyện kĩ năng 91. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 93. D. BÀI TẬP TRẮC NGHIỆM 96. BÀI TẬP CUỐI CHƯƠNG 3 109. PHẦN 1. GIẢI BÀI TẬP SÁCH GIÁO KHOA 109. BÀI TẬP TỔNG ÔN CHƯƠNG V 114. PHẦN 1. TRẮC NGHIỆM 114. PHẦN 2. TỰ LUẬN 133.
Bài giảng giới hạn và hàm số liên tục Toán 11 CTST
Tài liệu gồm 147 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề giới hạn và hàm số liên tục trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). MỤC LỤC : Chương 3 . GIỚI HẠN & HÀM SỐ LIÊN TỤC 3. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ 3. A. TÓM TẮT LÝ THUYẾT 3. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 4. Dạng 1. Giới hạn hữu tỉ 4. 1. Phương pháp 4. 2. Các ví dụ rèn luyện kĩ năng 5. Dạng 2. Dãy số chứa căn thức 6. 1. Phương pháp 6. 2. Các ví dụ rèn luyện kĩ năng 6. Dạng 3. Tính giới hạn của dãy số chứa hàm mũ 7. 1. Phương pháp 7. 2. Các ví dụ rèn luyện kĩ năng 7. Dạng 4. Tổng của cấp số nhân lùi vô hạn 9. 1. Phương pháp 9. 2. Các ví dụ rèn luyện kĩ năng 9. Dạng 5. Phương pháp sai phân và quy nạp tính giới hạn 10. 1. Phương pháp 10. 2. Các ví dụ rèn luyện kĩ năng 12. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 14. D. BÀI TẬP TRẮC NGHIỆM 17. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ 41. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 41. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 43. Dạng 1. Dãy số có giới hạn hữu hạn 43. 1. Phương pháp 43. 2. Các ví dụ rèn luyện kĩ năng 43. Dạng 2. Giới hạn tại vô cực 44. 1. Phương pháp 44. 2. Các ví dụ rèn luyện kĩ năng 45. Dạng 3. giới hạn một bên 47. 1. Phương pháp 47. 2. Các ví dụ rèn luyện kĩ năng 47. Dạng 3. Dạng vô định 0 0 49. 1. Phương pháp 49. 2. Các ví dụ rèn luyện kĩ năng 49. Dạng 4. Dạng vô định 56. 1. Phương pháp 56. 2. Các ví dụ rèn luyện kĩ năng 56. Dạng 5. Dạng vô định 0 60. 1. Phương pháp 60. 2. Các ví dụ rèn luyện kĩ năng 61. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 63. D. BÀI TẬP TRẮC NGHIỆM 65. BÀI 3 . HÀM SỐ LIÊN TỤC 85. A. TÓM TẮT LÝ THUYẾT 85. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 86. Dạng 1. Hàm số liên tục tại một điểm 86. 1. Phương pháp 86. 2. Các ví dụ rèn luyện kĩ năng 86. Dạng 2. Hàm số liên tục trên tập xác định 88. 1. Phương pháp 88. 2. Các ví dụ rèn luyện kĩ năng 89. Dạng 3. Số nghiệm của phương trình trên một khoảng 90. 1. Phương pháp 90. 2. Các ví dụ rèn luyện kĩ năng 90. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 93. D. BÀI TẬP TRẮC NGHIỆM 95. BÀI TẬP CUỐI CHƯƠNG III 107. CÂU HỎI TRẮC NGHIỆM 107. BÀI TẬP TỰ LUẬN 108. BÀI TẬP TỔNG ÔN CHƯƠNG 3 113. PHẦN 1. TRẮC NGHIỆM 113. PHẦN 2. TỰ LUẬN 131.