Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1

Nội dung Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 bao gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, với đáp án và lời giải chi tiết. Trong đề thi có các bài toán như sau: Hai vòi nước cùng chảy vào một cái bể và trong 5 giờ bể sẽ đầy. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì bể sẽ được 2/3 nước. Hỏi nếu mỗi vòi chảy một mình, thì trong bao lâu bể mới đầy? Cho đường tròn (O), M là một điểm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn và bán kính của đường tròn đó. b) PR = RS. Đề thi cung cấp bài toán thú vị, đòi hỏi sự tư duy logic và lập luận chặt chẽ của thí sinh. Hy vọng qua thử sức với đề thi này, các thí sinh có thể nắm vững kiến thức và kỹ năng cần thiết để chuẩn bị cho kỳ thi chính thức sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc bao gồm 5 bài toán tự luận, với lời giải chi tiết cụ thể giúp học sinh tự tin trong việc giải quyết các bài toán phức tạp. Đề thi được ra dành cho các học sinh có khả năng toán học ưu việt, để giúp định hình và phát triển năng khiếu toán học của học sinh từ sớm.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu bao gồm 5 bài toán tự luận với lời giải chi tiết. Đây là cơ hội cho học sinh thể hiện năng lực, kiến thức và kỹ năng giải toán một cách sâu sắc. Đề thi này giúp học sinh rèn luyện tư duy logic, khả năng phân tích và giải quyết vấn đề một cách chính xác và nhạy bén.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Dưới đây là một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy. Giả sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M, N, P, Q cùng thuộc một đường tròn. + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE. a. Chứng minh tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt, các số đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.
Đề thi thử tuyển sinh năm học 2017 2018 môn Toán trường THCS Nga Thiện Thanh Hóa
Nội dung Đề thi thử tuyển sinh năm học 2017 2018 môn Toán trường THCS Nga Thiện Thanh Hóa Bản PDF Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa là bài kiểm tra gồm 5 bài toán tự luận, được cung cấp kèm theo lời giải chi tiết. Đề thi này sẽ giúp các thí sinh ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới.