Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trọn bộ phương pháp giải phương trình - Hệ phương trình - Nguyễn Anh Huy

Phương trình là một trong những phân môn quan trọng nhất của Đại số vì có những ứng dụng rất lớn trong các ngành khoa học. Sớm được biết đến từ thời xa xưa do nhu cầu tính toán của con người và ngày càng phát triển theo thời gian, đến nay, chỉ xét riêng trong Toán học, lĩnh vực phương trình đã có những cải tiến đáng kể, cả về hình thức (phương trình hữu tỉ, phương trình vô tỉ, phương trình mũ – logarit) và đối tượng (phương trình hàm, phương trình sai phân, phương trình đạo hàm riêng . . .) Còn ở Việt Nam, phương trình, từ năm lớp 8, đã là một dạng toán quen thuộc và được yêu thích bởi nhiều bạn học sinh. Lên đến bậc THPT, với sự hỗ trợ của các công cụ giải tích và hình học, những bài toán phương trình – hệ phương trình ngày càng được trau chuốt, trở thành nét đẹp của Toán học và một phần không thể thiếu trong các kì thi Học sinh giỏi, thi Đại học. Đã có rất nhiều bài viết về phương trình – hệ phương trình, nhưng chưa thể đề cập một cách toàn diện về những phương pháp giải và sáng tạo phương trình. Nhận thấy nhu cầu có một tài liệu đầy đủ về hình thức và nội dung cho cả hệ chuyên và không chuyên, Diễn đàn MathScope đã tiến hành biên soạn quyển sách Chuyên đề phương trình và hệ phương trình mà chúng tôi hân hạnh giới thiệu đến các thầy cô giáo và các bạn học sinh. Quyển sách này gồm 6 chương, với các nội dung như sau: [ads] + Chương I : Đại cương về phương hữu tỉ cung cấp một số cách giải tổng quát phương trình bậc ba và bốn, ngoài ra còn đề cập đến phương trình phân thức và những cách xây dựng phương trình hữu tỉ. + Chương II : Phương trình và hệ phương trình có tham số đề cập đến các phương pháp giải và biện luận bài toán có tham số ,cũng như một số bài toán thường gặp trong các kì thi Học sinh giỏi. + Chương III : Các phương pháp giải phương trình chủ yếu tổng hợp những phương pháp quen thuộc như bất đẳng thức, lượng liên hợp, hàm số đơn điệu . . . với nhiều bài toán mở rộng nhằm giúp bạn đọc có cách nhìn tổng quan về phương trình. Chương này không đề cập đến Phương trình lượng giác, vì vấn đề này đã có trong chuyên đề Lượng giác của Diễn đàn. + Chương IV : Phương trình mũ – logarit đưa ra một số dạng bài tập ứng dụng của hàm số logarit, với nhiều phương pháp biến đổi đa dạng như đặt ẩn phụ, dùng đẳng thức, hàm đơn điệu … + Chương V : Hệ phương trình là phần trọng tâm của chuyên đề. Nội dung của chương 7 bao gồm một số phương pháp giải hệ phương trình và tổng hợp các bài hệ phương trình hay trong những kì thi học sinh giỏi trong nước cũng như quốc tế. + Chương VI : Sáng tạo phương trình và hệ phương trình đưa ra những cách xây dựng một bài hay và khó từ những phương trình đơn giản bằng các công cụ mới như số phức, hàm hyperbolic, hàm đơn điệu . . . Ngoài ra còn có hai phần Phụ lục cung cấp thông tin ứng dụng phương trình và hệ phương trình trong giải toán và về lịch sử phát triển của phương trình. Chúng tôi xin ngỏ lời cảm ơn tới những thành viên của Diễn đàn đã chung tay xây dựng chuyên đề. Đặc biệt xin chân thành cảm ơn thầy Châu Ngọc Hùng, thầy Nguyễn Trường Sơn, anh Hoàng Minh Quân, anh Lê Phúc Lữ, anh Phan Đức Minh vì đã hỗ trợ và đóng góp những ý kiến quý giá cho chuyên đề, bạn Nguyễn Trường Thành vì đã giúp ban biên tập kiểm tra các bài viết để có một tuyển tập hoàn chỉnh. Niềm hi vọng duy nhất của những người làm chuyên đề là bạn đọc sẽ tìm thấy nhiều điều bổ ích và tình yêu toán học thông qua quyển sách này. Chúng tôi xin đón nhận và hoan nghênh mọi ý kiến xây dựng của bạn đọc để chuyên đề được hoàn thiện hơn. Mọi góp ý xin vui lòng chuyển đến [email protected]

Nguồn: toanmath.com

Đọc Sách

Một số kỹ thuật giải bất phương trình
Tài liệu gồm 06 trang, được biên soạn bởi các tác giả: Huỳnh Nguyễn Luân Lưu và Nguyễn Thị Duy An (Trung tâm Thăng Long, thành phố Hồ Chí Minh), hướng dẫn một số kỹ thuật giải bất phương trình. Tài liệu được đăng tải trên tạp chí Toán học và Tuổi trẻ số 539 xuất bản tháng 5 năm 2022. Ở học kì II năm lớp 10 các em học sinh có học về bất phương trình (BPT). Đây là dạng toán đòi hỏi kỹ năng tính toán phải tốt. Hơn nữa, nếu chúng ta không nắm vững một số kỹ thuật thì khi giải ta sẽ làm cho bài toán phức tạp thêm. Trong bài viết này chúng tôi xin giới thiệu đến các em một chuyên đề nhỏ này về cách giải một số bất phương trình. 1. Kỹ thuật đặt ẩn phụ. 2. Kỹ thuật ẩn phụ không hoàn toàn. 3. Kỹ thuật nhân lượng liên hợp có đánh giá. 4. Kỹ thuật dùng hàm số để giải. BÀI TẬP TỰ LUYỆN.
Sử dụng tính chất của lũy thừa để giải phương trình và hệ phương trình
Tài liệu gồm 10 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du số 1, tỉnh Bắc Ninh), hướng dẫn phương pháp sử dụng tính chất của lũy thừa để giải phương trình và hệ phương trình; tài liệu được đăng trên tạp chí Toán học và Tuổi trẻ số 533 (xuất bản tháng 11 năm 2021). 1. Lý thuyết cần nắm Xin nhắc lại một số tính chất của lũy thừa đã biết: Tính chất 1 . Cho n là số nguyên dương. 1) Với a, b là số thực ta có: 2 1 2 1 n n a b a b. 2) Với a, b là số thực không âm ta có: 2 2 n n a b a b. 3) Với a, b là số thực không dương ta có: 2 2 n n a b a b. 4) Cho a là số thực dương, b là số thực ta có: 2 2 n n a b a b a a b hoặc b a 2 2 n n b a. Tính chất 2 . Với n là số nguyên dương và a, b là số thực ta có: 0 1 1 n n n k n k k n n n n n n a b C a C a b C a b C b (công thức nhị thức Newton). Tính chất 3 . Với n là số nguyên dương và a, b là các số thực ta có: 2222 n n n a b a b. Đẳng thức xảy ra khi và chỉ khi a b. Tính chất 4 . Với n là số nguyên dương và a, b là số thực ta có: 1) 222 n n n a b a b 0 a hoặc 0 b. 2) 212 1 2 1 n n n a b a b 0 a hoặc 0 b hoặc 0. 2. Ví dụ minh họa 3. Bài tập tự luyện
Một số phương pháp giải phương trình - hệ phương trình - Trần Hoài Vũ
Tài liệu gồm 59 trang, được biên soạn bởi thầy giáo Trần Hoài Vũ (giáo viên Toán trường THPT chuyên Lào Cai, tỉnh Lào Cai), hướng dẫn một số phương pháp giải phương trình – hệ phương trình; tài liệu được sử dụng để bồi dưỡng học sinh giỏi môn Toán bậc THPT. I. Phương pháp biến đổi đại số, rút thế. II. Phương pháp đạt ẩn số phụ. III. Phương pháp hàm số. IV. Phương pháp đánh giá. V. Phương pháp lượng giác hóa. VI. Phương pháp sử dụng lượng liên hợp. VII. Phương pháp sử dụng tọa độ vector.
Nghiên cứu định lý Viète và ứng dụng - Nguyễn Thành Nhân
Tài liệu gồm 56 trang, được biên soạn bởi tác giả Nguyễn Thành Nhân, khai thác chuyên sâu định lý Viète và ứng dụng. A. LỊCH SỬ. B. ĐỊNH LÝ VIÈTE. Trong toán học, định lý Viète hay công thức Viète (có khi viết theo phiên âm tiếng Việt là Vi-ét), do nhà toán học Pháp François Viète tìm ra, nêu lên mối quan hệ giữa các nghiệm của một phương trình đa thức (trong trường số phức) và các hệ số của nó. I. Định lý Viète cho phương trình bậc hai. II. Định lý Viète cho phương trình đa thức bất kỳ. C. MỘT SỐ TIPS GIẢI NHANH CÁC BÀI TOÁN ỨNG DỤNG ĐỊNH LÝ VIÈTE. I. Dấu nghiệm của phương trình bậc hai. II. Một số đẳng thức cần lưu ý. III. Ứng dụng đa thức đối xứng để giải quyết các bài tập áp dụng định lý Viète. D. MỘT SỐ ỨNG DỤNG CỦA ĐỊNH LÝ VIÈTE. I. Một số ứng dụng. Dạng 1. Tìm hai số khi biết tổng và tích. Dạng 2. Tính giá trị biểu thức đối xứng. Dạng 3. Tìm điều kiện của tham số để hai nghiệm liên hệ với nhau bởi một hệ thức cho trước. Dạng 4. Tìm hệ thức liên hệ giữa các nghiệm độc lập với tham số. Dạng 5. Thiết lập phương trình bậc hai. Dạng 6. Xét dấu các nghiệm. Dạng 7. Giải hệ phương trình đối xứng loại 1. Dạng 8. Chứng minh bất đẳng thức. Dạng 9. Ứng dụng trong bài toán cực trị. Dạng 10. Ứng dụng trong bài toán tiếp tuyến. Dạng 11. Ứng dụng hệ thức truy hồi. Dạng 12. Ứng dụng tính các biểu thức lượng giác. Dạng 13. So sánh nghiệm. Dạng 14. Ứng dụng khác. II. Bài tập áp dụng.