Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hai bổ đề trong bài toán phương trình hàm trên tập các số thực dương

Phương trình hàm trên tập các số thực dương luôn là các bài toán hay và khó. Để giải quyết các bài toán này chúng ta cần vận dụng nhiều kỹ thuật kinh điển trong giải toán phương trình hàm kết hợp nhuần nhuyễn với các kiến thức Đại số và Giải tích. Trong bài viết này, các tác giả Đoàn Quang Đăng (THPT Chuyên Bến Tre) và Võ Trần Hiền (THPT Chuyên Tiền Giang) sẽ giới thiệu hai bổ đề khá thú vị dùng để giải quyết các lớp bài toán có thể đưa về dạng f(x + A) = f(x) + B và f(x + A) + B = f(x + C) + D. Mục lục : 1 Bổ đề 1 – f(x + A) = f(x) + B 2. 2 Bổ đề 2 – f(x + A) + B = f(x + C) + D 10. 3 Bài tập rèn luyện 17. 4 Tài liệu tham khảo 18. + Diễn đàn Art of Problem Solving. + Nhóm Hướng tới Olympic VN. + Một góc nhìn tổng quát cho bài phương trình hàm thi HSG QG 2022 – Nguyễn Huy Trung. + Hai bổ đề trong bài toán phương trình hàm trên tập số thực dương – Đoàn Quang Đăng. + Vietnamese Mathematical Competitions 2022 Booklet.

Nguồn: toanmath.com

Đọc Sách

10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 10 - Lê Hoành Phò
Cuốn sách 10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 10 của nhà giáo ưu tú – Th.S Lê Hoành Phò có 21 chuyên đề với nội dung là tóm tắt kiến thức trọng tâm của Toán phổ thông và Toán chuyên, phần các bài Toán chọn lọc có khoảng 900 bài với nhiều dạng loại và mức độ từ cơ bản đến phức tạp, bài tập tự luyện khoảng 250 bài, có hướng dẫn và đáp số. Cuốn sách có 3 chuyên đề nâng cao: Đa thức, Phương trình nghiệm nguyên và Toán suy luận. Nội dung cụ thủ như sau: + Chuyên đề 1. Phản chứng và quy nạp + Chuyên đề 2. Ánh xạ và hàm số + Chuyên đề 3. Tập hợp và phép đếm + Chuyên đề 4. Phương trình + Chuyên đề 5. Hệ phương trình [ads] + Chuyên đề 6. Bất phương trình + Chuyên đề 7. Vector + Chuyên đề 8. Tích vô hướng + Chuyên đề 9. Hệ thức lượng + Chuyên đề 10. Tam giác và đường tròn + Chuyên đề 11. Cực trị hình học + Chuyên đề 12. Phép biến hình + Chuyên đề 13. Tọa độ phẳng + Chuyên đề 14. Đường tròn và Conic + Chuyên đề 15. Lượng giác và ứng dụng + Chuyên đề 16. Bất đẳng thức cơ bản + Chuyên đề 17. Bất đẳng thức mở rộng + Chuyên đề 18. Giá trị lớn nhất, nhỏ nhất + Chuyên đề 19. Đa thức + Chuyên đề 20. Phương trình nghiệm nguyên + Chuyên đề 31. Toán suy luận Hy vọng cuốn sách sẽ là cẩm nang giúp các em ôn luyện thật tốt cho kỳ thi học sinh giỏi Toán 10 sắp tới. Chúc các em đạt giải cao!