Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

5 bài tập Tích phân dạng đặc biệt có lời giải - Trần Sĩ Tùng

Tài liệu chỉ gồm 2 trang với 5 bài toán tích phân dạng đặc biệt có lời giải chi tiết. Đây là dạng toán tích phân khá hay, được giải bằng cách các phương pháp độc đáo.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng tích phân trong các bài toán thực tế
Tài liệu gồm 77 trang, tuyển chọn và hướng dẫn giải các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong các bài toán thực tế, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT Quốc gia môn Toán năm học 2020 – 2021. Mục lục tài liệu ứng dụng tích phân trong các bài toán thực tế: A. Bài toán thực tế về vận tốc quãng đường (Trang 3). B. Bài toán thực tế về diện tích (Trang 23). C. Bài toán thực tế về thể tích (Trang 51).
Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Trọng
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, ví dụ minh họa và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Mục lục chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Trọng: Bài 1 . Nguyên hàm. + Dạng 1. Định nghĩa, tính chất và nguyên hàm cơ bản. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Phương pháp đổi biến. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Nguyên hàm từng phần. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 2 . Tích phân. + Dạng 1. Tích phân dùng định nghĩa, tính chất. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Tích phân đổi biến số. 1. Đổi biến số dạng 1. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Đổi biến số dạng 2. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Tích phân từng phần. 1. Dạng 1. $\int_\alpha ^\beta f \left( x \right)\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax}\\ {{e^{ax}}} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Dạng 2. $\int_a^\beta f \left( x \right)\ln \left( {ax} \right)dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 3. Dạng 3. $\int_\alpha ^\beta {{e^{ax}}} \left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 3 . Ứng dụng của tích phân trong hình học. + Dạng 1. Ứng dụng của tích phân tính diện tích hình phẳng. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Ứng dụng của tích phân tính thể tích. a. Ví dụ minh họa. b. Bài tập áp dụng.
7 dạng toán tích phân thường gặp
Tài liệu gồm 96 trang, được tổng hợp bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, tuyển chọn 266 bài tập tích phân thường gặp trong chương trình Giải tích 12 chương 3. Các bài tập tích phân được phân chia thành 7 dạng toán: Dạng toán 1. Tìm tích phân dựa vào tính chất của tích phân. + Dạng 1.1. Áp dụng tính chất để giải. + Dạng 1.2. Áp dụng bảng công thức cơ bản. Dạng toán 2. Tìm tích phân của hàm số hữu tỷ. Dạng toán 3. Giải tích phân bằng phương pháp vi phân. Dạng toán 4. Giải tích phân bằng phương pháp đổi biến số. + Dạng 4.1. Hàm số chứa căn thức. + Dạng 4.2. Hàm số chứa hàm lượng giác. + Dạng 4.3. Hàm số chứa hàm số mũ, logarit. + Dạng 4.4. Hàm số chứa hàm số đa thức, hửu tỉ. + Dạng 4.5. Hàm số chứa hàm số không tường minh (hàm ẩn). Dạng toán 5. Tính tích phân bằng phương pháp từng phần. + Dạng 5.1. Hàm số tường minh. + Dạng 5.2. Hàm số không tường minh (hàm ẩn). Dạng toán 6. Tính tích phân bằng cách kết hợp nhiều phương pháp. Dạng toán 7. Tính tích phân của các hàm số khác. + Dạng 7.1. Tích phân của hàm số chứa dấu giá trị tuyệt đối. + Dạng 7.2. Tích phân của hàm số cho bởi nhiều công thức. + Dạng 7.3. Tích phân của hàm số chẵn, lẻ.
5 dạng toán nguyên hàm thường gặp
Tài liệu gồm 77 trang, được tổng hợp bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, tuyển chọn 205 bài tập nguyên hàm thường gặp trong chương trình Giải tích 12 chương 3. Các bài tập nguyên hàm được phân chia thành 5 dạng toán: Dạng toán 1. Tìm nguyên hàm bằng bảng nguyên hàm. + Dạng 1.1. Áp dụng bảng nguyên hàm (không có điều kiện). + Dạng 1.2. Áp dụng bảng nguyên hàm tìm nguyên hàm có điều kiện. Dạng toán 2. Tìm nguyên hàm theo phương pháp vi phân. + Dạng 2.1. Tìm nguyên hàm theo phương pháp vi phân (không có điều kiện). + Dạng 2.1. Tìm nguyên hàm theo phương pháp vi phân (có điều kiện). Dạng toán 3. Tìm nguyên hàm bằng phương pháp đổi biến. + Dạng 3.1. Tìm nguyên hàm theo phương pháp đổi biến số (không có điều kiện). + Dạng 3.2. Tìm nguyên hàm theo phương pháp đổi biến số (có điều kiện). Dạng toán 4. Tìm nguyên hàm bằng phương pháp từng phần. + Dạng 4.1. Tìm nguyên hàm bằng phương pháp từng phần (không có điều kiện). + Dạng 4.2. Tìm nguyên hàm bằng phương pháp từng phần (có điều kiện). Dạng toán 5. Sử dụng nguyên hàm để giải toán.