Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 11 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán 11 năm học 2019 – 2020 cụm Sóc Sơn – Mê Linh – Hà Nội; đề thi gồm có 01 trang với 08 bài toán dạng tự luận, thời gian làm bài thi 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 11 năm học 2019 – 2020 cụm Sóc Sơn – Mê Linh – Hà Nội : + Cho hình chóp S.ABC và điểm M tùy ý nằm bên trong tam giác ABC. Ba đường thẳng đi qua M, song song với SA, SB, SC cắt lần lượt các mặt phẳng (SBC), (SAC), (SAB) tại A1, B1, C1. Chứng minh rằng SA/MA1 + SB/MB1 + SC/MC1 ≥ 9. [ads] + Cho tam giác đều ABC cạnh là a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng d đi qua D và vuông góc với mặt phẳng (ABC) tại D lấy điểm S sao cho SD = a√6/2. Chứng minh rằng (SAD) ⊥ (SBC) và (SAB) ⊥ (SAC). + Cho hàm số y = f(x) có đồ thị (C) xác định và có đạo hàm trên thỏa mãn f3(1 + x) + 2f(1 + 2x) – 21x – 3 = 0. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng (ABCD). Biết AB a BC a 3 và SD a 5. Đường thẳng qua A vuông góc với AC cắt các đường thẳng CB CD lần lượt tại I J. Gọi H là hình chiếu vuông góc của A trên SC. Gọi K L là giao điểm của SB SD với (HIJ) a. Chứng minh rằng AK SBC. b. Tính khoảng cách từ điểm B đến (HIJ). + Trên một đường thẳng có n điểm màu xanh và n điểm màu đỏ. Chứng minh rằng tổng tất cả các khoảng cách giữa các cặp điểm cùng màu bé hơn hoặc bằng tổng tất cả các khoảng cách giữa các cặp điểm khác màu. + Cho dãy số (un) xác định bởi 1 n u và 2 1 1 n n n u u với n = 1, 2, 3 … Tính giới hạn lim n n u +∞.
Đề thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh cấp THPT môn Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận. Nội dung đề gồm các phần: lượng giác, xác suất, giới hạn, hình học không gian, min – max và dãy số. Đề thi có lời giải chi tiết và thang điểm.
Đề thi chọn học sinh giỏi Toán 11 năm học 2016 - 2017 sở GD và ĐT Vĩnh Phúc
Đề thi chọn học sinh giỏi Toán 11 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận. Đề thi có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh AC và M là trung điểm cạnh BC. Đoạn thẳng AM cắt đường tròn ngoại tiếp tam giác BCD tại điểm E. Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại điểm F khác B. Đường thẳng AF cắt đường thẳng BE tại I, đường thẳng CI cắt đường thẳng BD tại K. a. Chứng minh rằng DA = DF b. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ABK + Cho S là một số nguyên dương sao cho S chia hết cho tất cả các số nguyên dương từ 1 đến 2017. Xét k số nguyên dương a1, a2, … ak (không nhất thiết phân biệt) thuộc tập hợp {1, 2, … 2017} thỏa mãn a1 + a2 + … + ak >= 2S. Chứng minh rằng ta có thể chọn ra từ các số a1, a2, … ak một vài số sao cho tổng của chúng bằng S.
Đề thi KSCL học sinh giỏi Toán 11 năm học 2016 - 2017 cụm thi THPT Yên Thành - Nghệ An
Đề thi KSCL học sinh giỏi Toán 11 năm học 2016 – 2017 cụm thi THPT Yên Thành – Nghệ An gồm 6 câu hỏi tự luận, có lời giải chi tiết.