Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập trắc nghiệm về hàm số và các bài toán liên quan - Trần Duy Thúc

Tài liệu phân dạng bài tập trắc nghiệm về hàm số và các bài toán liên quan do thầy Trần Duy Thúc biên soạn, các bài toán đều có đáp án. Lời giới thiệu của tác giả : Chào các Em học sinh thân mến! Chắc hẳn các Em cũng đã nắm được thông tin rằng năm 2017 môn Toán sẽ thi theo hình thức trắc nghiệm. Thông tin trên chắc Thầy sẽ không đề cặp nhiều ở đây nữa. Điều cần nhất bây giờ đó là các Em phải tập trung học thật kĩ. Nếu như trước kia, thi tự luận thì các Em chỉ cần hiểu lý thuyết, nắm được các dạng bài tập và giải được các bài tập là đã tốt. Tuy nhiên, với hình thức thi trắc nghiệm thì bấy nhiêu là chưa đủ. Chẳng những các Em phải nắm thật chắc lý thuyết, nắm được các dạng bài tâp, biết giải bài tập mà còn phải giải thật nhanh. Nếu như thi tự luận mỗi dạng em làm khoảng 10 bài đã hiểu được thì bây giờ Em phải làm 100 bài , thậm chí 200 bài và hơn nữa. Vì không phải chỉ biết giải, chỉ hiểu mà phải giải nhanh nhất, lựa chọn phương pháp tiết kiệm thời gian nhất. Nhằm đáp ứng câu trúc đề thi mới của Bộ và nhằm cung cấp lượng bài tập đáng kể cho các Em luyện tập Thầy biên soạn quyển tài liệu Các dạng bài tập trắc nghiệm về Hàm Số. Theo cấu trúc dự kiến của Bộ thì nội dung này chiếm 12 câu. Thầy tin rằng với tài liệu này có thể giúp các Em nắm được từ đơn giản nhất đến các bài toán phức tạp và sẽ hầu như không có dạng bài tập nào về Khảo Sát Hàm số nằm ngoài quyển tài liệu này. Tuy nhiên, việc các Em đọc thêm nhiều tài liệu đó là một điều Thầy rất vui, rất khuyến khích. Để các Em thuận lợi trong việc ghi nhớ các dạng bài tập và luyện tập đến mức nhuần nhiễn, trong vòng 30 giây xong bài Toán. [ads] Thầy sẽ chia tài liệu ra thành 7 phần: + Phần 1. Các bài toán liên quan đến tính tăng đến tính tăng giảm của hàm số. + Phần 2. Các bài toán liên quan đến cực trị của hàm số. + Phần 3. Các bài toán về giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Phần 4. Các bài toán về tiếp tuyến với đồ thị của hàm số. + Phần 5. Các bài toán sự tương giao. + Phần 6. Một số bài toán khác. + Phần 7. Bài tập tổng hợp. + Phần 8. Hướng dẫn và đáp số.

Nguồn: toanmath.com

Đọc Sách

Phiếu bài tập tích phân hàm ẩn có đáp án và lời giải
Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (CLB Giáo Viên Trẻ Thành Phố Huế), tuyển tập 05 phiếu bài tập tích phân hàm ẩn có đáp án và lời giải, giúp học sinh lớp 12 rèn luyện khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu phiếu bài tập tích phân hàm ẩn có đáp án và lời giải: Phiếu ôn tập số 01 (Trang 02). Đáp án và lời giải phiếu ôn tập số 01 (Trang 05). Phiếu ôn tập số 02 (Trang 15). Đáp án và lời giải phiếu ôn tập số 02 (Trang 18). Phiếu ôn tập số 03 (Trang 28). Đáp án và lời giải phiếu ôn tập số 03 (Trang 31). Phiếu ôn tập số 04 (Trang 40). Đáp án và lời giải phiếu ôn tập số 04 (Trang 43). Phiếu ôn tập số 05 (Trang 54). Đáp án và lời giải phiếu ôn tập số 05 (Trang 57).
Phiếu bài tập ứng dụng tích phân có đáp án và lời giải
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (CLB Giáo Viên Trẻ Thành Phố Huế), tuyển tập 05 phiếu bài tập ứng dụng tích phân có đáp án và lời giải, giúp học sinh lớp 12 rèn luyện khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu phiếu bài tập ứng dụng tích phân có đáp án và lời giải: Phiếu ôn tập số 01 (Trang 02). Đáp án và lời giải phiếu ôn tập số 01 (Trang 07). Phiếu ôn tập số 02 (Trang 18). Đáp án và lời giải phiếu ôn tập số 02 (Trang 24). Phiếu ôn tập số 03 (Trang 35). Đáp án và lời giải phiếu ôn tập số 03 (Trang 40). Phiếu ôn tập số 04 (Trang 52). Đáp án và lời giải phiếu ôn tập số 04 (Trang 57). Phiếu ôn tập số 05 (Trang 68). Đáp án và lời giải phiếu ôn tập số 05 (Trang 74).
Bài tập nguyên hàm dành cho học sinh trung bình - yếu
Tài liệu gồm 74 trang, tổng hợp bài tập trắc nghiệm nguyên hàm mức độ nhận biết – thông hiểu (NB – TH), có đáp án và lời giải chi tiết, phù hợp với đối tượng học sinh trung bình – yếu trong quá trình học tập chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Dạng toán 1: Sử dụng nguyên hàm cơ bản (Trang 1). Dạng toán 2: Nguyên hàm có điều kiện (Trang 6). Dạng toán 3: Phương pháp đổi biến số (Trang 10). Dạng toán 4: Phương pháp từng phần (Trang 14).
Các dạng bài tập VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 138 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm, tích phân và ứng dụng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm, tích phân và ứng dụng: CHỦ ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm. CHỦ ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân. CHỦ ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.