Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bội và ước của một số nguyên
Nội dung Chuyên đề bội và ước của một số nguyên Bản PDF - Nội dung bài viết Chuyên đề bội và ước của một số nguyên Chuyên đề bội và ước của một số nguyên Tài liệu này bao gồm 14 trang, tập trung vào lý thuyết, các dạng toán, và bài tập về chuyên đề bội và ước của một số nguyên. Nội dung của tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán, đặc biệt là chương trình Toán lớp 6 phần Số học chương 2: Số nguyên. Mục tiêu của tài liệu là giúp học sinh có kiến thức vững về quan hệ chia hết, khái niệm ước và bội của các số nguyên. Học sinh sẽ học cách xác định được bội và ước của các số nguyên, từ đó có thể giải các bài tập liên quan. Trong tài liệu, có hai dạng bài tập chính mà học sinh sẽ gặp phải. Dạng thứ nhất là tìm bội (ước) của một số nguyên. Học sinh sẽ được hướng dẫn cách tìm bội và ước của một số nguyên thông qua những phương pháp đơn giản như nhẩm và phân tích thừa số nguyên tố. Dạng thứ hai là tìm giá trị của x thỏa mãn các đẳng thức và điều kiện chia hết. Điều này giúp học sinh rèn luyện kỹ năng giải toán và áp dụng kiến thức đã học vào thực tế. Tóm lại, tài liệu này là công cụ hữu ích để học sinh lớp 6 rèn luyện kiến thức về bội và ước của số nguyên một cách hiệu quả và đồng thời giúp họ phát triển kỹ năng giải toán đồng thời làm chủ kiến thức trong chương trình Toán.
Chuyên đề nhân hai số nguyên, tính chất của phép nhân
Nội dung Chuyên đề nhân hai số nguyên, tính chất của phép nhân Bản PDF - Nội dung bài viết Chuyên đề nhân hai số nguyên: Tính chất và các dạng bài tậpLÝ THUYẾT CƠ BẢNCÁC DẠNG BÀI TẬP Chuyên đề nhân hai số nguyên: Tính chất và các dạng bài tập Tài liệu này bao gồm 17 trang, tập trung vào lý thuyết cơ bản về nhân hai số nguyên, bao gồm các tính chất quan trọng của phép nhân. Ngoài ra, tài liệu còn cung cấp các dạng toán và bài tập thực hành, kèm theo đáp án và lời giải chi tiết để hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán. Mục tiêu của chuyên đề này là giúp học sinh: Hiểu được quy tắc cơ bản khi nhân hai số nguyên. Thực hành được phép nhân hai số nguyên một cách chính xác. Áp dụng các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng trong các phép tính. LÝ THUYẾT CƠ BẢN Trong lý thuyết trọng tâm của tài liệu, bạn sẽ được hướng dẫn về cách thực hiện phép nhân hai số nguyên, bao gồm các quy tắc khi nhân hai số nguyên khác dấu và cùng dấu. Bạn sẽ học cách nhân hai số nguyên âm và dương, cũng như áp dụng tính chất giao hoán và kết hợp của phép nhân trong các bài toán. CÁC DẠNG BÀI TẬP Trên tài liệu cung cấp nhiều dạng bài tập khác nhau để bạn thực hành. Một số dạng bài tập bao gồm: Bài tập thực hiện phép tính nhân cơ bản. Bài tập vận dụng tính chất của phép nhân như giao hoán, kết hợp. Bài tập áp dụng tính chất phân phối của phép nhân đối với phép cộng, trừ. Với tài liệu này, bạn sẽ có cơ hội nắm vững và thực hành kỹ năng nhân hai số nguyên một cách hiệu quả.
Chuyên đề phép trừ hai số nguyên
Nội dung Chuyên đề phép trừ hai số nguyên Bản PDF - Nội dung bài viết Chuyên đề phép trừ hai số nguyênLÝ THUYẾT TRỌNG TÂMCÁC DẠNG BÀI TẬP Chuyên đề phép trừ hai số nguyên Tài liệu này bao gồm 16 trang, tập trung vào lý thuyết quan trọng, các dạng bài toán và bài tập chuyên đề về phép trừ hai số nguyên. Đồng thời, tài liệu cũng cung cấp đáp án và lời giải chi tiết, hỗ trợ các học sinh lớp 6 trong quá trình học tập chương trình Toán lớp 6, phần Số học chương 2: Số nguyên. Mục tiêu của tài liệu này là giúp học sinh: Hiểu rõ quy tắc trừ hai số nguyên. Thực hành phép trừ hai số nguyên một cách chính xác. Vận dụng quy tắc dấu ngoặc và quy tắc chuyển vế trong các phép tính. LÝ THUYẾT TRỌNG TÂM Tập trung vào việc trình bày lý thuyết quan trọng về phép trừ hai số nguyên. CÁC DẠNG BÀI TẬP Dạng 1: Thực hành phép trừ hai số nguyên. Để trừ số nguyên a cho số nguyên b, ta chỉ cần cộng a với số đối của b. Dạng 2: Vận dụng quy tắc dấu ngoặc. Khi loại bỏ dấu ngoặc với dấu "-" phía trước, ta phải đổi dấu của tất cả các số hạng trong ngoặc. Dạng 3: Sử dụng quy tắc chuyển vế. Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta cần đảo ngược dấu của số hạng đó. Tóm lại, tài liệu này sẽ giúp học sinh lớp 6 nắm vững kiến thức cơ bản về phép trừ hai số nguyên và áp dụng chúng vào thực hành các bài tập đa dạng.
Chuyên đề phép cộng hai số nguyên
Nội dung Chuyên đề phép cộng hai số nguyên Bản PDF - Nội dung bài viết Chuyên đề phép cộng hai số nguyên Chuyên đề phép cộng hai số nguyên Tài liệu này gồm 15 trang, tập trung vào lý thuyết và các dạng toán liên quan đến phép cộng hai số nguyên. Được biên soạn để hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán, đặc biệt là chương trình Số học chương 2: Số nguyên. Mục tiêu của tài liệu: Hiểu quy tắc cộng hai số nguyên. Thực hiện phép cộng hai số nguyên. Vận dụng các tính chất như giao hoán, kết hợp, cộng với số 0, cộng với số đối trong tính toán. LÝ THUYẾT TRỌNG TÂM Tài liệu bắt đầu bằng việc giới thiệu quy tắc cộng hai số nguyên, cung cấp các ví dụ minh họa để học sinh dễ dàng nắm bắt và hiểu được cách thực hiện phép cộng. CÁC DẠNG BÀI TẬP Tiếp theo, tài liệu đưa ra các dạng bài tập khác nhau. Dạng 1 yêu cầu thực hiện phép cộng số nguyên, bao gồm cộng hai số nguyên cùng dấu và khác dấu. Dạng 2 tập trung vào áp dụng các tính chất của phép cộng số nguyên để tính tổng một cách linh hoạt. Với cách trình bày chi tiết, dễ hiểu và nhiều ví dụ minh họa, tài liệu này sẽ giúp học sinh lớp 6 nắm vững kiến thức về phép cộng hai số nguyên và phát triển kĩ năng tính toán của mình một cách nhanh chóng và hiệu quả.