Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tổng ôn khối đa diện và thể tích khối đa diện có đáp án

Tài liệu gồm 33 trang, tuyển chọn các bài tập tổng ôn khối đa diện và thể tích khối đa diện có đáp án, giúp học sinh lớp 12 rèn luyện sau khi học xong chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. MỤC LỤC : Bài 1 . TỔNG QUAN VỀ HÌNH ĐA DIỆN, KHỐI ĐA DIỆN 2. A BÀI TẬP TẠI LỚP 2. B BÀI TẬP TỰ LUYỆN 4. + Mức độ Dễ 4. + Mức độ Trung bình 5. + Mức độ Khá 6. Bài 2 . THỂ TÍCH KHỐI CHÓP 7. A BÀI TẬP TẠI LỚP 7. B BÀI TẬP TỰ LUYỆN 12. + Mức độ Dễ 12. + Mức độ Trung bình 13. + Mức độ Khá 14. + Mức độ Khó 14. Bài 3 . THỂ TÍCH KHỐI LĂNG TRỤ 16. A BÀI TẬP TẠI LỚP 16. B BÀI TẬP TỰ LUYỆN 18. + Mức độ Dễ 18. + Mức độ Trung bình 19. + Mức độ Khá 20. + Mức độ Khó 21. Bài 4 . PHÂN CHIA KHỐI ĐA DIỆN. TỈ SỐ THỂ TÍCH 23. A BÀI TẬP TẠI LỚP 23. B BÀI TẬP TỰ LUYỆN 25. + Mức độ Dễ 25. + Mức độ Trung bình 26. + Mức độ Khá 26. + Mức độ Khó 27. ĐỀ ÔN TẬP CUỐI CHƯƠNG 28. + Đề số 1 28. + Đề số 2 30. ĐÁP ÁN CÁC TRẮC NGHIỆM CÁC CHỦ ĐỀ 33. + Đáp án Bài 1 33. + Đáp án Bài 2 33. + Đáp án Bài 3 33. + Đáp án Bài 4 33. + Đáp án đề ôn chương 33.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 235 bài tập trắc nghiệm số phức có lời giải chi tiết
Tài liệu gồm 67 trang tuyển tập 235 bài tập trắc nghiệm số phức có đáp án kèm lời giải chi tiết. Các bài tập được phân thành các dạng: + Dạng 1. Số phức và các phép toán + Dạng 2. Phương trình trên tập số phức + Dạng 3. Tìm số phức thỏa mãn điều kiện cho trước + Dạng 4. Tập hợp các điểm biểu diễn số phức + Dạng 5. Biểu diễn hình học của số phức + Dạng 6. Số phức và GTLN – GTNN [ads]
Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao - Phạm Minh Tuấn
Tài liệu gồm 27 trang được biên soạn bởi tác giả Phạm Minh Tuấn hướng dẫn giải 65 bài toán số phức hay và khó, các bài toán số phức liên quan đến min – max, bất đẳng thức … đây là các bài toán thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán nhằm phân loại điểm 9 – 10. Trích dẫn tài liệu : + Gọi S là tập hợp các số phức z thỏa mãn |z – i| ≥ 3 và |z – 2 – 2i| ≤ 5. Kí hiệu z1, z2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = |z2 + 2.z1|. + Cho số phức w và hai số thực a, b. Biết rằng w + i và 2w – 1 là hai nghiệm của phương trình z^2 + az + b = 0. Tính a + b. + Cho số phức z thỏa mãn |z| = 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 1| + |z^2 – z + 1|. Tính giá trị của M.n. [ads]
Các dạng bài tập số phức điển hình - Lê Bá Bảo, Vũ Ngọc Huyền
Tài liệu gồm 34 trang trình bày phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm các dạng toán số phức điển hình trong chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả Lê Bá Bảo và Vũ Thị Ngọc Huyền. Nội dung tài liệu được chia thành các phần: A. Lý thuyết I. Xây dựng tập hợp số phức và các khái niệm liên quan. II. Các phép toán với số phức. III. Giới thiệu một số tính năng tính toán số phức bằng máy tính Casio. [ads] B. Một số dạng toán về số phức I. Các bài toán liên quan tới khái niệm số phức. II. Dạng toán xác định tập hợp điểm biểu diễn số phức. III. Biểu diễn hình học của số phức quỹ tích phức. C. Bài tập rèn luyện kỹ năng 1. Phần thực, phần ảo của số phức. 2. Biểu diễn hình học của số phức. 3. Các phép toán với số phức, mô đun số phức và số phức liên hợp. 4. Phương trình phức.
Một số cách giải và kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio - Trần Thanh Tuyền
Tài liệu gồm 8 trang hướng một số cách giải, kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio, tài liệu cũng đưa ra những sai lầm cần tránh khi dùng máy tính cầm tay để giải. Nội dung chính gồm các phần: 1. Tìm số phức – xác định phần thực, phần ảo của số phức + Dạng 1: Không chứa z và liên hợp của z + Dạng 2: Có chứa z và liên hợp của z [ads] 2. Tìm tập hợp điểm biểu diễn số phức + Dạng 1: Chỉ dùng cho các đáp án có dạng là các đồ thị đường thẳng + Dạng 2: Làm được cho tất cả các loại đồ thị đường 3. Giải phương trình trên C + Dạng 1: Căn bậc 2 của số phức + Dạng 2: Phương trình không chứa đơn vị ảo i + Dạng 3: Phương trình chứa đơn vị ảo i