Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương

Nội dung Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG huyện Toán lớp 8 năm 2015 – 2016 của phòng GD&ĐT Cẩm Giàng, Hải Dương. Đề thi này bao gồm các câu hỏi chi tiết và đáp án, giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. Trích đề giao lưu HSG huyện Toán lớp 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương: - Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF, CG cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh tam giác ABC đồng dạng với tam giác EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. c) Chứng minh. - Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x + 2 dư 26, f(x) chia cho x2 – 4 được thương là -5x và còn dư. - Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng. Đây là một đề thi mang tính thách thức và phù hợp để các em học sinh lớp 8 rèn luyện và nâng cao kiến thức Toán của mình. Chúc các em ôn tập tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề Olympic 27/4 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Phú Mỹ BR VT
Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc
Nội dung Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi có 10 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn Đề HSG huyện Toán lớp 8 vòng 2 năm 2022 - 2023 phòng GD&ĐT Lập Thạch - Vĩnh Phúc: 1. Biết rằng đa thức \( f(x) \) khi chia cho \( x - 2 \) thì được số dư là 6067; khi chia cho \( x + 3 \) thì được số dư là -4043. Tìm đa thức dư khi chia đa thức \( f(x) \) cho đa thức \( x² + x - 6 \). 2. Cho hình vuông \( ABCD \) có cạnh bằng 8. Trên cạnh \( BC \), lấy điểm M sao cho \( BM = 5 \). Gọi N là giao điểm của đường thẳng \( CD \) và đường thẳng vuông góc với \( AM \) tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. 3. Cho hình vuông \( ABCD \) có cạnh bằng a. Trên cạnh \( AD \) lấy điểm M sao cho \( AM = 3MD \). Kẻ tia \( BX \) cắt cạnh \( CD \) tại I sao cho \( ABM = MBI \). Kẻ tia phân giác của \( CBI \), tia này cắt cạnh \( CD \) tại N. a) Chứng minh rằng: \( MN = AM + NC \). b) Tính diện tích tam giác BMN theo a. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kì thi sắp tới. Chúc các em thành công!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 8 Đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi được thiết kế với hình thức 100% tự luận, thời gian là 120 phút (không tính thời gian giao đề), bao gồm đáp án, lời giải chi tiết và thang chấm điểm. Kỳ thi sẽ diễn ra vào ngày 22 tháng 02 năm 2023. Đề thi bao gồm các câu hỏi sau: Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. Câu hỏi yêu cầu chứng minh tứ giác AMCE là hình bình hành, chứng minh các tam giác ADE và ECN bằng nhau, chứng minh tứ giác AENF là hình vuông, và tính tỉ số diện tích của hai tam giác NKL và NEP. Thí sinh lựa chọn làm một trong hai câu sau: chứng minh rằng nếu 2n (với n là số nguyên dương) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương, hoặc tìm giá trị nhỏ nhất và lớn nhất của biểu thức 2^6 + 2^3 + 1^x. Cho biểu thức A = 3^3 * 3^3 * ... * 2022^3 * 2023^3. Câu hỏi yêu cầu tìm số dư khi chia số A cho 3.
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Sầm Sơn Thanh Hóa
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Sầm Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2022-2023 tại Sầm Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2022-2023 tại Sầm Sơn Thanh Hóa Sytu xin trân trọng giới thiệu đến các thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 8 năm học 2022-2023 tại phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa. Đề thi này là cơ hội cho các em học sinh thể hiện tài năng, kiến thức và kỹ năng Toán của mình, đồng thời giúp học sinh rèn luyện, nâng cao kiến thức và kỹ năng Toán thông qua các bài tập thực hành và câu hỏi thảo luận.