Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 năm 2019 - 2020 trường Yên Lạc 2 - Vĩnh Phúc

Ngày … tháng 10 năm 2019, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi khối 12 môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 01 trang với 10 bài toán, đề dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2019 – 2020 trường Yên Lạc 2 – Vĩnh Phúc : + Tìm m để hàm số y = x^3 – 2(2m + 1)x^2 + (5m^2 + 10m – 3)x – 10m^2 – 4m + 6 có hai điểm điểm cực trị A, B nằm về hai phía so với trục hoành. + Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau sao cho trong đó có mặt đồng thời ba chữ số 0, 1, 2. + Cho hình chóp S.ABC có ASB = CSB = 60 độ, CSA = 90 độ, SA = 2SB = 3SC = 6. Tính thể tích khối chóp S.ABC. [ads] + Cho hình chóp S.ABC có đáy ABCD là tam giác đều cạnh a, tam giác SAB vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 60 độ. Tính thể tích khối chóp S.ABC và khoảng cách từ C đến (SAB) theo a. + Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC nội tiếp đường tròn tâm (I). Điểm M nằm trên cung BC không chứa A và không trùng với B, C. Gọi H(1;4) và K(2/5;11/5) lần lượt là hình chiếu vuông góc của M lên AB, AC. Phương trình của đường thẳng (BC): x + y – 1 = 0 và khoảng cách từ M đến BC bằng 2√2. Tìm tọa độ đỉnh A biết rằng M có hoành độ dương.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2016 sở GD và ĐT Quảng Ninh
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2016 sở GD và ĐT Quảng Ninh Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm 2016 sở GD và ĐT Quảng Ninh gồm 6 câu tự luận, có đáp án và thang điểm. Trích một số câu trong đề thi: 1. Một học sinh tham dự kỳ thi môn Toán. Học sinh đó phải làm một đề thi trắc nghiệm khách quan gồm 10 câu. Mỗi câu có 4 đáp án khác nhau, trong đó chỉ có một đáp án đúng. Học sinh sẽ được chấm đỗ nếu trả lời đúng ít nhất 6 câu. Vì học sinh đó không học bài nên chỉ chọn ngẫu nhiên đáp án trong cả 10 câu hỏi. Tính xác suất để học sinh thi đỗ. 2. Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có ba góc đều nhọn. Đường thẳng chứa trung tuyến kẻ từ B và đường thẳng AC lần lượt có phương trình : 3x + 5y – 8 = 0; x – y – 4 = 0. Đường thẳng qua B và vuông góc với AC cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D(4; –2). Tính diện tích tam giác ABC. 3. Cho hình chóp đều S.ABCD, có đáy là hình vuông ABCD với độ dài cạnh bằng a và tâm là O. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABCD) bằng 60. Tính cosin của góc giữa MN và mặt phẳng (SBD).
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2016 – 2017 sở GD và ĐT Ninh Bình gồm 2 phần: + Phần trắc nghiệm: 40 câu + Phần tự luận: 4 câu
Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang
Nội dung Đề thi tháng lần 2 lớp 12 môn Toán năm 2023 2024 trường THPT Ngô Sĩ Liên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán lớp 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8? File WORD (dành cho quý thầy, cô):
Đề thi chọn học sinh giỏi môn Toán lớp 12 Tỉnh Bình Dương năm 2021 - 2022