Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ

Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 của phòng GD&ĐT Thanh Thủy - Phú Thọ được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận. Đề bao gồm 16 câu trắc nghiệm (chiếm 08 điểm) và 04 câu tự luận (chiếm 12 điểm), thời gian làm bài là 150 phút. Đề thi cung cấp đáp án cho phần trắc nghiệm và lời giải chi tiết cho phần tự luận. Trích dẫn một số câu hỏi từ đề thi: Một ngày trong năm được gọi là ngày nguyên tố nếu cả số ngày và số tháng đều là số nguyên tố. Hỏi trong năm 2019 có bao nhiêu ngày nguyên tố? Một quả bóng đá được khâu từ 32 miếng da. Suất từng miếng màu ngũ giác đen khâu với 5 miếng màu trắng, và mỗi miếng màu lục giác trắng khâu với 3 miếng màu đen. Số miếng màu trắng là bao nhiêu? Cho tam giác ABC. Đường thẳng xy đi qua A và cắt cạnh BC tại M. Gọi H, K lần lượt là chân đường vuông góc kẻ từ B và C xuống xy. Xác định vị trí đường thẳng xy để tổng BH + CK đạt giá trị lớn nhất. Đề thi này giúp học sinh rèn luyện kỹ năng giải các bài toán toán học, đồng thời phát triển tư duy logic và khả năng suy luận. Qua đó, học sinh có cơ hội nâng cao kiến thức và kỹ năng trong môn Toán, chuẩn bị tốt cho kỳ thi HSG và các kỳ thi quan trọng khác.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Nho Quan Ninh Bình
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Huyện Lớp 8 Môn Toán Năm 2014-2015 Đề Học Sinh Giỏi Huyện Lớp 8 Môn Toán Năm 2014-2015 Xin chào đến với đề thi học sinh giỏi môn Toán lớp 8 năm 2014-2015 của phòng GD&ĐT Nho Quan, Ninh Bình. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Cho abc là các số hữu tỷ thỏa mãn điều kiện ab⋅bc⋅ca = 1. Chứng minh rằng biểu thức 2√a + √b + c là bình phương của một số hữu tỷ. Cho các số nguyên abc thoả mãn a^3 + b^3 + c^3 - 2abc = 10. Tính giá trị của biểu thức (ab + bc + ca)^2. Cho tam giác ABC, M là một điểm thuộc cạnh BC sao cho BM = MC. Qua M kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD = EC = DM = ME. c) Cho 2 tam giác BDM và CME có diện tích lần lượt là 9cm² và 16cm². Tính diện tích tam giác ABC. d) Chứng minh rằng AM = BC, AC = BM, AB = CM. Hy vọng rằng đề thi này sẽ giúp các em học sinh rèn luyện và nâng cao kiến thức của mình. Chúc các em thành công!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Yên Phong Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013-2014 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013-2014 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện Toán lớp 8 năm 2013-2014 phòng GD&ĐT Yên Phong-Bắc Ninh là bài thi có độ khó cao, đầy thách thức dành cho các học sinh có năng khiếu và niềm đam mê với môn học Toán. Trong đề thi, có nhiều câu hỏi thuộc những chủ đề khá phổ biến như hình thang, từ đó giúp học sinh rèn luyện kiến thức cơ bản và nâng cao kỹ năng giải toán của mình. Với các câu hỏi về tứ giác, diện tích hình thang, góc toán học, học sinh sẽ phải thể hiện khả năng suy luận logic và tính toán chính xác để có thể đạt điểm cao. Câu hỏi cuối cùng dành cho thí sinh trường THCS Yên Phong đòi hỏi họ phải có kiến thức vững và biết kết hợp nhiều khái niệm để giải quyết vấn đề đề ra. Việc chứng minh tính đúng đắn của biểu thức toán học cũng là một yếu tố quan trọng đánh giá khả năng tư duy logic của học sinh. Trong tổng thể, đề học sinh giỏi huyện Toán lớp 8 năm 2013-2014 phòng GD&ĐT Yên Phong-Bắc Ninh là một bài kiểm tra toàn diện, giúp học sinh phát triển khả năng tư duy logic, xử lý vấn đề và rèn luyện kỹ năng giải toán. Học sinh cần phải ôn tập, luyện tập thực sự cẩn thận để có kết quả tốt trong kỳ thi này.
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Nho Quan Ninh Bình
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 - 2014 Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 - 2014 Sau đây là Đề học sinh giỏi huyện Toán lớp 8 năm 2013 - 2014 của phòng GD&ĐT Nho Quan - Ninh Bình, bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán lớp 8 năm 2013 - 2014 phòng GD&ĐT Nho Quan - Ninh Bình: 1. Chứng minh rằng số có dạng \(432An^{n}+6116\) chia hết cho 24 với mọi số tự nhiên n. 2. Đa thức \(f(x)\) khi chia cho \(x-1\) dư 4, khi chia cho \(2x-1\) dư 2\(3x\). Tìm phần dư khi chia \(f(x)\) cho \(2x^{2}+1\). 3. Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 3.1. Chứng minh KM vuông góc với DB. 3.2. Chứng minh rằng: \(KC \times KD = KH \times KB\). 3.3. Ký hiệu \(ABM, DCM, S, S'\) lần lượt là diện tích các tam giác ABM và DCM. 3.3.1. Chứng minh tổng \(ABM, DCM, S, S'\) không đổi. 3.3.2. Xác định vị trí của điểm M trên cạnh BC để \(ABM, DCM, S, S'\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.
Đề học sinh năng khiếu Toán 8 năm 2023 - 2024 phòng GDĐT Tam Nông - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tam Nông, tỉnh Phú Thọ; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2023 – 2024 phòng GD&ĐT Tam Nông – Phú Thọ : + Để lập một đội tuyển năng khiếu về bóng chuyền của một trường. Thầy thể dục đưa ra quy định: Mỗi bạn dự tuyển phải phát bóng đủ 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu bị trừ 2 điểm. Bạn nào có số điểm từ 20 điểm trở lên sẽ được chọn vào đội tuyển. Nếu muốn vào đội tuyển phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu? + Cho hình chữ nhật ABCD hai đường chéo cắt nhau tại O. P là một điểm di động trên đoạn thẳng OB (P khác O và B). M là điểm đối xứng của C qua P kẻ ME vuông góc với đường thẳng AD tại E và kẻ MF vuông góc với đường thẳng AB tại F. a) Chứng minh: MA song song với BD và AB là tia phân giác của MAC. b) Chứng minh E F P thẳng hàng. c) Chứng minh 2 EF MF không đổi khi P di động trên đoạn thẳng OB. + Gieo ngẫu nhiên một con xúc sắc ba lần liên tiếp, xác suất để số chấm ba lần gieo đều là các số chẵn là?