Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối lăng trụ xiên có lời giải chi tiết

Trong các bài toán liên quan đến việc tính thể tích khối lăng trụ thì bài toán về khối lăng trụ xiên thường có độ phức tạp nhiều hơn, vì việc xác định và tính độ dài đường cao của khối lăng trụ xiên là khó khăn hơn và các giả thiết đi kèm cũng có sự đa dạng nhiều hơn. Nhằm giúp bạn đọc thực hành với các dạng toán tính thể tích khối lăng trụ xiên, giới thiệu tài liệu tuyển tập 61 bài tập thể tích khối lăng trụ xiên có lời giải chi tiết thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán những năm gần đây. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối lăng trụ xiên có lời giải chi tiết: + Cho khối lăng trụ tam giác ABC.A’B’C’ có thể tích bằng 30 (đơn vị thể tích). Thể tích của khối tứ diện AB’C’C là: A. 5 (đơn vị thể tích). B. 10 (đơn vị thể tích). C. 12,5 (đơn vị thể tích). D. 7,5 (đơn vị thể tích). + Cho lăng trụ ABCD.A’B’C’D’ với đáy ABCD là hình thoi, AC = 2a, góc BAD = 120 độ. Hình chiếu vuông góc của điểm B trên mặt phẳng (A’B’C’D’) là trung điểm cạnh A’B’, góc giữa mặt phẳng (AC’D’) và mặt đáy lăng trụ bằng 60 độ. Tính thể tích V của khối lăng trụ ABCD.A’B’C’D’. [ads] + Một khối lăng trụ tam giác có các cạnh đáy bằng 13, 14, 15 cạnh bên tạo với mặt phẳng đáy một góc 30 độ và có chiều dài bằng 8. Khi đó thể tích khối lăng trụ là? + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân ở C. Cạnh BB’ = a và tạo với đáy một góc bằng 60 độ. Hình chiếu vuông góc hạ từ B’ lên đáy trùng với trọng tâm của tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ là? + Cho lăng trụ tam giác ABC.A’B’C’. Các điểm M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’ sao cho AM/AA’ = 1/2, BN/BB’ = 2/3 và mặt phẳng (MNP) chia lăng trụ thành hai phần có thể tích bằng nhau. Khi đó tỉ số CP/CC’ là?

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao - Phạm Minh Tuấn
Tài liệu gồm 27 trang được biên soạn bởi tác giả Phạm Minh Tuấn hướng dẫn giải 65 bài toán số phức hay và khó, các bài toán số phức liên quan đến min – max, bất đẳng thức … đây là các bài toán thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán nhằm phân loại điểm 9 – 10. Trích dẫn tài liệu : + Gọi S là tập hợp các số phức z thỏa mãn |z – i| ≥ 3 và |z – 2 – 2i| ≤ 5. Kí hiệu z1, z2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = |z2 + 2.z1|. + Cho số phức w và hai số thực a, b. Biết rằng w + i và 2w – 1 là hai nghiệm của phương trình z^2 + az + b = 0. Tính a + b. + Cho số phức z thỏa mãn |z| = 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 1| + |z^2 – z + 1|. Tính giá trị của M.n. [ads]
Các dạng bài tập số phức điển hình - Lê Bá Bảo, Vũ Ngọc Huyền
Tài liệu gồm 34 trang trình bày phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm các dạng toán số phức điển hình trong chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả Lê Bá Bảo và Vũ Thị Ngọc Huyền. Nội dung tài liệu được chia thành các phần: A. Lý thuyết I. Xây dựng tập hợp số phức và các khái niệm liên quan. II. Các phép toán với số phức. III. Giới thiệu một số tính năng tính toán số phức bằng máy tính Casio. [ads] B. Một số dạng toán về số phức I. Các bài toán liên quan tới khái niệm số phức. II. Dạng toán xác định tập hợp điểm biểu diễn số phức. III. Biểu diễn hình học của số phức quỹ tích phức. C. Bài tập rèn luyện kỹ năng 1. Phần thực, phần ảo của số phức. 2. Biểu diễn hình học của số phức. 3. Các phép toán với số phức, mô đun số phức và số phức liên hợp. 4. Phương trình phức.
Một số cách giải và kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio - Trần Thanh Tuyền
Tài liệu gồm 8 trang hướng một số cách giải, kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio, tài liệu cũng đưa ra những sai lầm cần tránh khi dùng máy tính cầm tay để giải. Nội dung chính gồm các phần: 1. Tìm số phức – xác định phần thực, phần ảo của số phức + Dạng 1: Không chứa z và liên hợp của z + Dạng 2: Có chứa z và liên hợp của z [ads] 2. Tìm tập hợp điểm biểu diễn số phức + Dạng 1: Chỉ dùng cho các đáp án có dạng là các đồ thị đường thẳng + Dạng 2: Làm được cho tất cả các loại đồ thị đường 3. Giải phương trình trên C + Dạng 1: Căn bậc 2 của số phức + Dạng 2: Phương trình không chứa đơn vị ảo i + Dạng 3: Phương trình chứa đơn vị ảo i
110 bài tập trắc nghiệm số phức - Nguyễn Tấn Phong
Tài liệu gồm 8 trang với phần tóm tắt lý thuyết, công thức tính cơ bản và tuyển chọn 110 bài toán trắc nghiệm số phức. Trích dẫn tài liệu : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x3 [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x + Trong mặt phẳng (Oxy), cho A, B, C là 3 điểm lần lượt biểu diễn các số phức: 3 + 3i, -2 + i, 5 – 2i. Tam giác ABC là tam giác gì? A. Một tam giác cân B. Một tam giác đều C. Một tam giác vuông D. Một tam giác vuông cân