Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình đại số - Trịnh Bình

Tài liệu chuyên đề phương trình đại số gồm 56 trang được tổng hợp bởi tác giả Trịnh Bình, hướng dẫn phương pháp giải các bài toán phương trình đại số, giúp học sinh học tốt chương trình Đại số lớp 9 và ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1 . PHƯƠNG TRÌNH ĐA THỨC BẬC CAO. Để giải phương trình đa thức bậc cao chúng ta thường chuyển phương trình đó về dạng phương trình tích. Phương trình bậc 3: Thông thường để giải được phương trình bậc 3 chúng ta phải tìm được một nghiệm của phương trình, sau đó phân tích thành nhân tử và chuyển về giải phương trình bậc 2. Phương trình bậc 4: Để giải phương trình bậc 4 chúng ta thường nhẩm một nghiệm và phân tích phương trình bậc 4 thành tích của một đa thức bậc 3 và đa thức bậc nhất sau đó dùng các phương pháp để giải phương trình bậc 3 hoặc phân tích thành tích hai tam thức bậc 2, hoặc đặt ẩn phụ chuyển về giải phương trình bậc 2. + Dạng 1. Phương trình trùng phương: $a{x^4} + b{x^2} + c = 0$ $(a \ne 0).$ + Dạng 2. Phương trình có dạng: ${(x + m)^4} + {(x + n)^4} = p$ $(p > 0).$ + Dạng 3. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e$ trong đó $a + b = c + d.$ + Dạng 4. Phương trình có dạng: $\left( {a{x^2} + {b_1}x + c} \right)\left( {a{x^2} + {b_2}x + c} \right) = m{x^2}.$ + Dạng 5. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e{x^2}$ trong đó $ab = cd.$ + Dạng 6. Phương trình có dạng: ${a_1}{\left( {b{x^2} + {c_1}x + d} \right)^2}$ $ + {a_2}\left( {b{x^2} + {c_2}x + d} \right)$ $ = A{x^2}.$ + Dạng 7. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm bx + a = 0.$ + Dạng 8. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm kbx + {k^2}a = 0$ $(k > 0).$ Phương trình cao hơn bậc 4: Đối với các phương trình bậc cao hơn 4 phương pháp chung là dùng cách đưa về dạng phương trình tích hoặc đặt ẩn phụ để đưa về giải các phương trình bậc thấp hoặc với nhiều bài toán chúng ta nên lưu tâm tới việc có thể sử dụng phương pháp đánh giá để giải toán. [ads] CHỦ ĐỀ 2 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC. Bước 1: Tìm điều kiện xác định của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. Bước 3: Giải phương trình vừa nhận được. Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. Một số dạng phương trình phân thức thường gặp: + Dạng 1. Phương trình có dạng: $\frac{{{a_1}}}{{x + {b_1}}} + \frac{{{a_2}}}{{x + {b_2}}} + \ldots + \frac{{{a_n}}}{{x + {b_n}}} = A.$ + Dạng 2. Phương trình có dạng: $\frac{{{a_1}x + {b_1}}}{{x + {c_1}}} + \frac{{{a_2}x + {b_2}}}{{x + {c_2}}} + \ldots + \frac{{{a_n}x + {b_n}}}{{x + {c_n}}} = A.$ + Dạng 3. Phương trình có dạng: $\frac{{mx}}{{a{x^2} + {b_1}x + c}} + \frac{{nx}}{{a{x^2} + {b_2}x + c}} = p$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{a{x^2} + {d_1}x + c}}{{a{x^2} + {d_2}x + c}} = 0$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{px}}{{a{x^2} + dx + c}} = 0.$ Dạng 4. Phương trình có dạng: ${x^2} + {\left( {\frac{{ax}}{{x + a}}} \right)^2} = b$ với $a \ne 0$, $x \ne – a.$ Dạng 5. Sử dụng phương ph{p đ{nh gi{ để giải phương trình chứa phân thức CHỦ ĐỀ 3 . PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI. Để giải phương trình có chứa ẩn trong dấu giá trị tuyệt đối cần khử dấu giá trị tuyệt đối. Ta cần nhớ giá trị tuyệt đối của một biểu thức bằng chính nó nếu nó có giá trị không âm, bằng số đối của nó nếu nó có giá trị âm. Do đó để bỏ dấu giá trị tuyệt đối ta phải xét các giá trị làm biểu thức âm hoặc không âm.

Nguồn: toanmath.com

Đọc Sách

Một số kỹ thuật sử dụng bất đẳng thức AM - GM và bất đẳng thức Bunyakovski
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Đào Văn Nam, hướng dẫn một số kỹ thuật sử dụng bất đẳng thức AM – GM và bất đẳng thức Bunyakovski để giải toán. A. MỘT SỐ QUY TẮC CHUNG KHI SỬ DỤNG BẤT ĐẲNG THỨC AM – GM VÀ BẤT ĐẲNG THỨC BUNYAKOVSKI. + Quy tắc song hành: Đa số các bất đẳng thức đều có tính đối xứng nên chúng ta có thể sử dụng nhiều bất đẳng thức trong chứng minh một bài toán để định hướng cách giải nhanh hơn. + Quy tắc dấu bằng: Dấu “=” trong bất đẳng thức có vai trò rất quan trọng. Nó giúp ta kiểm tra tính đúng đắn của chứng minh, định hướng cho ta cách giải. Chính vì vậy khi giải các bài toán chứng minh bất đẳng thức hoặc các bài toán cực trị ta cần rèn luyện cho mình thói quen tìm điều kiện của dấu bằng mặc dù một số bài không yêu cầu trình bày phần này. + Quy tắc về tính đồng thời của dấu bằng: Chúng ta thường mắc sai lầm về tính xảy ra đồng thời của dấu “=” khi áp dụng liên tiếp hoặc song hành nhiều bất đẳng thức. Khi áp dụng liên tiếp hoặc song hành nhiều bất đẳng thức thì các dấu “=” phải cùng được thỏa mãn với cùng một điều kiện của biến. + Quy tắc biên: Đối với các bài toán cực trị có điều kiện ràng buộc thì cực trị thường đạt được tại vị trí biên. + Quy tắc đối xứng: Các bất đẳng thức có tính đối xứng thì vai trò của các biến trong các bất đẳng thức là như nhau do đó dấu “=” thường xảy ra tại vị trí các biến đó bằng nhau. Nếu bài toán có điều kiện đối xứng thì chúng ta có thể chỉ ra dấu “=”xảy ra tại khi các biến đó bằng nhau và bằng một giá trụ cụ thể. B. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC AM – GM. C. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC BUNYAKOVSKI.
Kỹ thuật sử dụng bất đẳng thức phụ trong chứng minh bất đẳng thức
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Phạm Văn Quý, hướng dẫn kỹ thuật sử dụng bất đẳng thức phụ trong chứng minh bất đẳng thức, đây là dạng toán khó thường gặp trong các đề thi học sinh giỏi Toán 9 và đề tuyển sinh vào lớp 10 môn Toán. 1. MỘT SỐ BẤT ĐẲNG THỨC PHỤ THƯỜNG SỬ DỤNG. Tuyển tập 20 bất đẳng thức phụ thường được sử dụng trong bài toán chứng minh bất đẳng thức. 2. CÁC BÀI TOÁN ÁP DỤNG. 13 ví dụ minh họa có hướng dẫn phương pháp giải. 19 bài tập để học sinh rèn luyện.
69 bài toán thực tế về hình học có đáp án và lời giải
Tài liệu gồm 60 trang, tuyển tập 69 bài toán thực tế về hình học có đáp án và lời giải chi tiết; tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Toán Tiểu Học – THCS – THPT Việt Nam. Trích dẫn tài liệu 69 bài toán thực tế về hình học có đáp án và lời giải: Bài 1. Hằng ngày hai anh em An và Bình cùng đi bộ từ nhà ở A để đến trường. Trường của An ở vị trí B, trường của Bình ở vị trí C theo hai hướng vuông góc với nhau. An đi với vận tốc 4 km h và đến trường sau 15 phút. Bình đi với vận tốc 3 km h và đến trường sau 12phút. Tính khoảng cách BC giữa hai trường (làm tròn đến mét). Bài 2. Một người A đang ở trên khinh khí cầu ở độ cao 150m nhìn thấy một vật B trên mặt đất cách hình chiếu của khí cầu xuống đất một khoảng 285m. Tính góc hạ của tia AB. Nếu khinh khí cầu tiếp tục bay lên thẳng đứng thì khi góc hạ của tia AB là 46 thì độ cao của khinh khí cầu là bao nhiêu? (làm tròn đến mét). Bài 3. Một người có mắt cách mặt đất 1,4m, đứng cách tháp Eiffel 400m nhìn thấy đỉnh tháp với góc nâng 39. Tính chiều cao của tháp (làm tròn đến mét). Bài 4. Một cột đèn cao 8m. Tính góc tạo bởi tia nắng mặt trời và mặt đất lúc nó có bóng trên mặt đất là 5m. Bài 5. Một cái thang dài 4m đang dựa vào tường, chân thang cách chân tường 2m. Tính góc tạo bởi thang với mặt đất và với mặt tường.
Các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán
Tài liệu gồm 88 trang, tuyển tập các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán; tài liệu được biên soạn dựa theo cấu trúc đề tuyển sinh lớp 10 THPT môn Toán của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Bài 1. Căn bậc hai, căn bậc ba 4. + Dạng 1.1: Tính giá trị biểu thức 4. + Dạng 1.2: Rút gọn biểu thức và tính giá trị 4. Bài 2. Bài toán hàm số bậc nhất – bậc hai 6. + Dạng 2.1: Giải bài toán tương giao giữa (P), (D) bằng phép toán và đồ thị 6. + Dạng 2.2: Bài toán tương giao giữa (P) và (D) có chứa tham số 9. Bài 3. Phương trình bậc 2 – Định lý Vi-et 9. + Dạng 3.1: Tính giá trị biểu thức bằng định lí vi-et 9. + Dạng 3.2: Giải phương trình bậc 2 chứa tham số bằng công thức Vi-et 11. Bài 4. Bài toán thực tế – suy luận 14. + Dạng 4.1: Bài toán CAN-CHI 14. + Dạng 4.2: Bài toán xác định năm nhuận DƯƠNG, nhuận ÂM 15. + Dạng 4.3: Bài toán xác định thứ, ngày, tháng trong năm 16. + Dạng 4.4: Bài toán xác định múi giờ trái đất 17. + Dạng 4.5: Bài toán thi đấu thể thao 18. + Dạng 4.6: Bài toán xác định chỉ số sinh học của con người 18. + Dạng 4.7: Bài toán về mua bán, kinh doanh sản phẩm tiêu dùng 19. + Dạng 4.8: Các bài toán tính phần tử trong tập hợp 20. + Dạng 4.9: Các dạng toán suy luận 21. Bài 5. Bài toán thực tế – ứng dụng hàm số 22. + Dạng 5.1: Bài toán cho sẵn hàm số bậc nhất 22. + Dạng 5.2: Tìm hệ số a, b trong hàm số bậc nhất mô tả các đại lượng bài toán 23. + Dạng 5.3: Lập hàm số mô tả các đại lượng trong bài toán thực tế 28. + Dạng 5.4: Cho sẵn hàm số mô tả đại lượng bài toán, tìm y biết x 31. Bài 6. Bài toán thực tế – Tỉ lệ phần trăm 33. + Dạng 6.1: Bài toán lời lỗ trong kinh doanh, giảm và tăng sản phẩm 33. + Dạng 6.2: Bài toán kinh doanh có tính thuế sản phẩm 34. + Dạng 6.3: Bài toán kinh doanh khuyến mãi sản phẩm 35. + Dạng 6.4: Bài toán tính lương, thu nhập của công nhân 36. + Dạng 6.5: Bài toán lãi suất ngân hàng 37. + Dạng 6.6: Bài toán tỉ lệ học sinh 38. + Dạng 6.7: Bài toán về dân số 38. + Dạng 6.8: Bài toán tính trung bình, tính phần trăm hợp chất 39. Bài 7. Giải toán bằng cách lập phương trình 41. + Dạng 7.1: Lập hệ phương trình bậc nhất một ẩn 41. + Dạng 7.2: Lập phương trình bậc hai, một ẩn 42. Bài 8. Giải toán đố bằng cách lập hệ phương trình 43. + Dạng 8.1: Lập hệ phương trình hai ẩn bậc nhất 43. + Dạng 8.2: Lập hệ phương trình hai ẩn giải bằng phương pháp đặc biệt 45. + Dạng 8.3: Lập hệ phương trình ba ẩn bậc nhất 46. Bài 9. Bài toán thực tế – hình học phẳng 49. + Dạng 9.1: Sử dụng tỉ số lượng trong tam giác vuông 49. + Dạng 9.2: Sử dụng hệ thức lượng trong tam giác vuông 52. + Dạng 9.3: Sử dụng công thức tính chu vi, diện tích đa giác, hình tròn 53. Bài 10. Bài toán thực tế – hình học không gian 55. + Dạng 10.1: Tính diện tích, thể tích khối chop, khối lăng trụ 55. + Dạng 10.2: Tính diện tích, thể tích khối tròn xoay(nón trụ cầu) 57. + Dạng 10.3: Bài toán liên quan khối chóp, khối lăng trụ và khối tròn xoay 64. Bài 11. Hình học phẳng – Đường tròn 67. + Dạng 11.1: Từ một đểm nằm ngoài đường tròn, kẻ 2 tiếp tuyến 67. + Dạng 11.2: Đường tròn có đường kính cho trước 78. Bài 12. Đề toán tuyển sinh 10 qua các năm 81.