Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm Toán 12 có đáp án - Nguyễn Bảo Vương

giới thiệu đến các bạn tài liệu tuyển tập bài tập trắc nghiệm Toán 12 có đáp án do thầy Nguyễn Bảo Vương biên soạn, tài liệu gồm 848 trang với các bài toán được sắp xếp theo từng nội dung bài học tương ứng với sách giáo khoa Giải tích 12 và Hình học 12, trong mỗi đơn vị bài học, các bài toán tiếp tục được phân loại theo 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao, ngoài ra, tác giả còn cung cấp đường dẫn lời giải chi tiết một số dạng toán 12 khó để hỗ trợ tối đa học sinh trong quá trình sử dụng tài liệu, tài liệu phù hợp với mọi đối tượng học sinh khối 12 sử dụng xuyên suốt quá trình học tập chương trình Toán 12 cũng như ôn thi THPT Quốc gia môn Toán.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC mặt trụ, hình trụ và khối trụ
Tài liệu gồm 16 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt trụ, hình trụ và khối trụ, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt trụ, hình trụ và khối trụ: A. LÝ THUYẾT TRỌNG TÂM Mặt trụ tròn xoay. Hình trụ tròn xoay. Khối trụ tròn xoay. Công thức cần nhớ. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, diện tích thiết diện, chiều cao, bán kính đáy, diện tích đáy của hình trụ. Dạng 2: Thể tích khối trụ, bài toán cực trị. Dạng 3: Bài toán thực tế về khối trụ.
Các dạng bài tập VDC mặt nón, hình nón và khối nón
Tài liệu gồm 25 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt nón, hình nón và khối nón, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt nón, hình nón và khối nón: A. LÍ THUYẾT TRỌNG TÂM Mặt nón tròn xoay. Hình nón tròn xoay. Khối nón tròn xoay. Công thức cần nhớ. Sơ đồ hệ thống hóa. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện của hình nón. Dạng 2: Tính thể tích khối nón, bài toán cực trị. Dạng 3: Bài toán thực tế về hình nón, khối nón.
Bài tập VD VDC mặt cầu, mặt trụ, mặt nón
Tài liệu gồm 48 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 50 câu hỏi và bài tập trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán.
Bài tập vận dụng min - max hình học không gian có lời giải chi tiết
giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.