Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC mặt cầu, khối cầu

Tài liệu gồm 20 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt cầu, khối cầu, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt cầu, khối cầu: A. LÍ THUYẾT TRỌNG TÂM Định nghĩa. Vị trí tương đối giữa mặt cầu và một điểm. Vị trí tương đối giữa mặt cầu và đường thẳng. Vị trí tương đối giữa mặt cầu và mặt phẳng. Công thức cần nhớ. B. CÁC DẠNG BÀI TẬP Dạng 1. Mặt cầu ngoại tiếp hình đa diện. + Cách 1. Tìm một điểm cách đều các đỉnh của khối đa diện theo định nghĩa mặt cầu. + Cách 2. Tâm mặt cầu ngoại tiếp khối đa diện là giao điểm của trục đường tròn ngoại tiếp đa giác đáy và mặt phẳng trung trực của một cạnh bên. + Cách 3. Dựa vào trục của đường tròn ngoại tiếp đa giác đáy và trục của đường tròn ngoại tiếp một mặt bên. Dạng 2. Mặt cầu nội tiếp khối đa diện. Dạng 3. Bài toán cực trị. Dạng 4. Bài toán thực tế. Dạng 5. Dạng toán tổng hợp.

Nguồn: toanmath.com

Đọc Sách

110 bài tập trắc nghiệm số phức - Nguyễn Tấn Phong
Tài liệu gồm 8 trang với phần tóm tắt lý thuyết, công thức tính cơ bản và tuyển chọn 110 bài toán trắc nghiệm số phức. Trích dẫn tài liệu : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x3 [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x + Trong mặt phẳng (Oxy), cho A, B, C là 3 điểm lần lượt biểu diễn các số phức: 3 + 3i, -2 + i, 5 – 2i. Tam giác ABC là tam giác gì? A. Một tam giác cân B. Một tam giác đều C. Một tam giác vuông D. Một tam giác vuông cân
250 bài tập trắc nghiệm số phức chọn lọc - Nguyễn Văn Rin
Tài liệu gồm 27 trang với các bài toán trắc nghiệm số phức chọn lọc từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc. Trích dẫn tài liệu : + (ĐỀ MINH HỌA – 2017) Cho số phức z = 3 – 2i . Tìm phần thực và phần ảo của số phức z‾. A. Phần thực bằng -3 và phần ảo bằng -2i B. Phần thực bằng -3 và phần ảo bằng -2 C. Phần thực bằng 3 và phần ảo bằng 2i D. Phần thực bằng 3 và phần ảo bằng 2 [ads] + (ĐỀ THỬ NGHIỆM – 2017) Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z. A. Phần thực là -4 và phần ảo là 3 B. Phần thực là 3 và phần ảo là -4i C. Phần thực là 3 và phần ảo là -4 D. Phần thực là -4 và phần ảo là 3i + Trong các khẳng định sau, khẳng định nào sai? A. Tập hợp các điểm biểu diễn các số phức có môđun bằng 1 là đường tròn đơn vị (đường tròn có bán kính bằng 1, tâm là gốc tọa độ) B. Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện |z| ≤ 1 là phần mặt phẳng phía trong (kể cả biên) của đường tròn đơn vị C. Tập hợp các điểm biểu diễn các số phức có phần thực bằng 3 là một đường thẳng song song với trục hoành D. Tập hợp các điểm biểu diễn các số phức có phần thực và phần ảo thuộc khoảng (-1; 1) là miền trong của một hình vuông
160 bài tập trắc nghiệm số phức - Trần Đình Thiên
Tài liệu gồm 17  trang với phần tóm tắt lý thuyết, công thức tính và 160 bài tập trắc nghiệm số phức, tài liệu được biên soạn bởi tác giả Trần Đình Thiên nhằm bổ sung thêm các bài toán trắc nghiệm số phức chất lượng để các em luyện tập thêm trong quá trình học nội dung Giải tích 12 chương 4. Trích dẫn tài liệu 160 bài tập trắc nghiệm số phức – Trần Đình Thiên : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số ảo là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Hai đường thẳng y = ±x (trừ gốc toạ độ O). D. Đường tròn x^2 + y^2 = 1.
Tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao - Nguyễn Bảo Vương
Tài liệu gồm 95 trang tuyển chọn 416 bài tập trắc nghiệm số phức cơ bản và 235 bài tập trắc nghiệm số phức nâng cao có đáp án, tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương nhằm cung cấp thêm ngân hàng đề thi trắc nghiệm số phức cho giáo viên trong quá trình giảng dạy và giúp học sinh có thêm nguồn đề số phức tham khảo, rèn luyện trong quá trình học chương trình Giải tích 12 chương 4. PHẦN 1 : 416 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC CƠ BẢN Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Các phép tính về số phức: Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. Số phức và thuộc tính của nó: + Tìm phần thực và phần ảo z = a + bi, suy ra phần thực a, phần ảo b. + Biểu diễn hình học của số phức. Dạng toán 2. Biểu diễn hình học của số phức và ứng dụng. Dạng toán 3. Căn bậc hai của số phức và phương trình bậc hai. Định nghĩa về căn bậc hai của số phức và những điểm cần lưu ý. Hướng dẫn phương pháp tìm căn bậc hai của số phức. Phương trình bậc hai với hệ số phức và phương pháp giải, định lý Vi-et. PHẦN 2 : 235 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC NÂNG CAO – CỰC CAO Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Dạng toán 2. Dạng lượng giác của số phức. Công thức De – Moivre: Có thể nói công thức De – Moivre là một trong những công thức thú vị và là nền tảng cho một loạt công thức quan trọng khác sau này như phép luỹ thừa, khai căn số phức, công thức Euler. Dạng toán 3. Cực trị của số phức. [ads] Trích dẫn tài liệu tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao – Nguyễn Bảo Vương : + Trên tập số phức, cho phương trình sau: (z + i)^4 + 4z^2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau? 1. Phương trình vô nghiệm trên trường số thực. 2. Phương trình vô nghiệm trên trường số phức. 3. Phương trình không có nghiệm thuộc tập số thực. 4. Phương trình có bốn nghiệm thuộc tập số phức. 5. Phương trình chỉ có hai nghiệm là số phức. 6. Phương trình có hai nghiệm là số thực. + Cho số phức z thỏa |z – 1 + i| = 2. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 2. D. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 4. + Cho số phức z thỏa |z + 2| = |1 – z|. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn. D. Tập hợp điểm biểu diễn số phức z là một đường Elip.