Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tứ giác

Nội dung Chuyên đề tứ giác Bản PDF - Nội dung bài viết Chuyên đề tứ giác: Tài liệu học tập chi tiết và linh hoạt Chuyên đề tứ giác: Tài liệu học tập chi tiết và linh hoạt Tài liệu Chuyên đề tứ giác bao gồm 15 trang thông tin tóm tắt lý thuyết chính xác cần thiết để học sinh hiểu rõ về chủ đề này. Cuốn sách cung cấp các phân dạng và hướng dẫn cách giải các dạng toán liên quan đến tứ giác, từ những bài cơ bản đến nâng cao. Để giúp học sinh tự rèn luyện, sách đã tuyển chọn các bài tập đa dạng, có đáp án và lời giải chi tiết. Với phần tóm tắt lý thuyết, học sinh sẽ nắm vững những kiến thức quan trọng về tứ giác. Phần bài tập và các dạng toán được chia thành hai phần: các dạng bài minh họa cơ bản và các dạng bài nâng cao, giúp phát triển tư duy toán học của học sinh. Cuốn sách cũng cung cấp phiếu bài tự luyện, giúp học sinh tự kiểm tra kiến thức và làm quen với các dạng bài khó hơn. Với cuốn tài liệu này, học sinh sẽ được hỗ trợ đáng kể trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. Tài liệu không chỉ đưa ra kiến thức một cách cụ thể và dễ hiểu mà còn giúp học sinh nắm vững kỹ năng giải toán và phát triển tư duy logic của mình.

Nguồn: sytu.vn

Đọc Sách

Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM A. Đại số. – Phân thức đại số. – Bất phương trình bậc nhất một ẩn. – Giải toán bằng cách lập phương trình: Dạng toán về năng suất, toán có nội dung hình học, toán phần trăm. B. Hình học. – Các trường hợp đồng dạng của hai tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1. Các bài toán rút gọn câu hỏi phụ. Dạng 2. Giải bài toán bằng cách lập phương trình. Dạng 3. Giải bất phương trình. Dạng 4. Hình học. Dạng 5. Các bài toán nâng cao.
Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. Dạng 1: Phương trình và bất phương trình. Dạng 2: Giải bài toán bằng cách lập phương trình. Dạng 3: Hình học. Dạng 4: Một số bài tập nâng cao.
Đề cương giữa kì 2 Toán 8 năm 2022 - 2023 trường THCS Dịch Vọng Hậu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn nội dung ôn tập kiểm tra giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Dịch Vọng Hậu, quận Cầu Giấy, thành phố Hà Nội. A. NỘI DUNG ÔN TẬP 1. Trả lời các câu hỏi 1, 2, 3, 4, 5 phần ôn tập chương III – Đại số SGK trang 32, 33. 2. Nắm vững các khái niệm về phương trình bậc nhất một ẩn, hai phương trình tương đương, hai quy tắc biến đổi tương đương phương trình, phương trình tích, phương trình chứa ẩn ở mẫu, điều kiện xác định của phương trình. 3. Nắm vững cách giải phương trình bậc nhất một ẩn, cách giải phương trình tích, cách giải phương trình chứa ẩn ở mẫu. 4. Học thuộc công thức tính diện tích của một số hình như: Tam giác, hình vuông, hình chữ nhật, hình thang, hình bình hành, hình thoi. 5. Học thuộc định lí Ta-lét, định lí đảo của định lí Ta-lét, hệ quả của định lí Ta-lét, tính chất đường phân giác của một tam giác. 6. Nắm vững ba trường hợp đồng dạng của tam giác. B. MỘT SỐ BÀI TẬP THAM KHẢO I. TRẮC NGHIỆM. II. BÀI TẬP TỰ LUẬN. 1. GIẢI PHƯƠNG TRÌNH. 2. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. 3. HÌNH HỌC.
Đề cương giữa kì 2 Toán 8 năm 2022 - 2023 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM * ĐẠI SỐ: 1. Phương trình bậc nhất một ẩn và phương trình đưa được về dạng ax + b = 0. 2. Phương trình tích A(x).B(x) = 0. 3. Phương trình chứa ẩn ở mẫu. 4. Giải bài toán bằng cách lập phương trình. * HÌNH HỌC: 1. Định lý Ta-lét. 2. Hệ quả của định lý Ta-lét. 3. Tính chất đường phân giác của tam giác. 4. Các trường hợp đồng dạng của hai tam giác và tính chất của hai tam giác đồng dạng. II. CÁC ĐỀ THAM KHẢO