Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng phương pháp nhân tử Lagrange để giải quyết một số bài toán cực trị

Trong ngành tối ưu hóa, phương pháp nhân tử Lagrange (đặt theo tên của nhà toán học Joseph Louis Lagrange) là một phương pháp để tìm cực tiểu hoặc cực đại địa phương của một hàm số chịu các điều kiện giới hạn. Phương pháp này chúng ta sẽ được học trong chương trình toán cao cấp của bậc đại học. Trên Internet đã có một vài bài viết nói về phương pháp này để chứng minh bất đẳng thức nhưng tuy nhiên vẫn còn tương đối nhiều bạn vẫn chưa biết đến phương pháp này. Do đó ở bài viết này mình sẽ đưa ra một ứng dụng khác của nó ngoài việc chứng minh bất đẳng thức ra thì nó còn là một công cụ khá là hữu hiệu giải quyết nhanh một số bài toán cực trị trong đề thi thử THPT Quốc Gia hiện nay đồng thời cũng giúp ích cho một số bạn còn hơi yếu về bất đẳng thức tham khảo!

Nguồn: toanmath.com

Đọc Sách

Áp dụng kỹ thuật hệ số bất định giải bất đẳng thức - Vũ Hoàng vs Bá Cẩn
Có bao nhiêu điều bí ẩn mà bạn chưa biết đến? Câu trả lời là rất rất nhiều và đôi khi bạn cảm thấy bực bội, khó chịu khi không thể tìm ra một lời giải thích thỏa đáng cho bí ẩn nào đó. Nhưng bạn hãy quan niệm rằng đằng sau bất kì một điều gì luôn hàm chứa một ý nghĩa nhất định. Và cũng không phải ngẫu nhiên mà sự lí giải lại được hình thành. Trong thế giới bất đẳng thức cũng vậy. Đôi khi bạn không thể hiểu được tại sao người ta lại có thể tìm ra một lời giải trông có vẻ “kì cục” như thế!!! Phải chăng là lần mò và may rủi lắm mới tìm ra được? Câu trả lời lại một lần nữa được nhắc lại: mỗi lời giải đều có sự giải thích của riêng bản thân nó. Việc tìm ra lời giải đó phải đi qua một quá trình lập luận, thử, sai và đúng. Trong chuyên đề nho nhỏ này chúng tôi muốn giới thiệu đến các bạn một kĩ thuật cơ bản nhưng không kém phần hiệu quả trong việc chứng minh một số dạng của bất đẳng thức. Nó không giúp ta giải quyết tất cả các bài toán mà chỉ giúp ta tìm ra những lời giải ngắn gọn và ấn tượng trong một lớp bài toán nào đó. Một số bài toán tuy dễ đối với phương pháp này nhưng lại là khó đối với kỹ thuật kia, đây cũng là điều hiển nhiên và dễ hiểu. [ads] Tài liệu Áp dụng kỹ thuật hệ số bất định giải bất đẳng thức (viết tắt là U.C.T) của 2 tác giả Nguyễn Thúc Vũ Hoàng và Võ Quốc Bá Cẩn gồm 33 trang với các nội dung chính sau: + Phần 1. Bài toán mở đầu. + Phần 2. Khởi đầu cùng một số bài toán cơ bản. + Phần 3. Kĩ thuật chuẩn hóa và U.C.T + Phần 4. U.C.T và kỹ thuật phân tách các trường hợp + Phần 5. Kết hợp bất đẳng thức Vornicu Schur với U.C.T + Phần 6. Một dạng biểu diễn thú vị + Phần 7. Giải quyết một số bài toán mà điều kiện liên quan mật thiết đến nhau + Phần 8. U.C.T mở rộng + Phần 9. Lời kết + Phần 10. Bài tập áp dụng
Chuyên đề bất đẳng thức xoay vòng - Nguyễn Văn Cương
Trong bất đẳng thức cổ điển thì bất đẳng thức xoay vòng là một nội dung hay và khó. Có những bất đẳng thức có dạng khá đơn giản nhưng phải mất hàng chục năm, nhiều nhà toán học mới giải quyết được. Hoàn toàn tự nhiên ta thấy còn rất nhiều dạng bất đẳng thức xoay vòng khác thì bất đẳng thức là gì, khi nào đúng, khi nào sai hoặc luôn luôn đúng. Trong bài luận văn này chúng tôi xây dựng được một dạng bất đẳng thức xoay vòng tổng quát mà các trường hợp riêng là những bài toán khó và rất khó có thể sử dụng trong những đề thi học sinh giỏi. Tài liệu Chuyên đề bất đẳng thức xoay vòng của sinh viên Nguyễn Văn Cương là khóa luận tốt nghiệp toán sơ cấp được hoàn thành dưới sự sướng dẫn của TS Nguyễn Vũ Lương gồm 66 trang. [ads] Luận văn này gồm có 2 chương: Chương 1: Bất đẳng thức xoay vòng (Trình bày những kết quả đã có về các bài bất đẳng thức phân thức) + Bất đẳng thức Schurs và hệ quả + Bất đẳng thức xoay vòng khác trong tam giác + Sử dụng bất đẳng thức Cauchy chứng minh một số dạng bất đẳng thức xoay vòng + Bất đẳng thức xoay vòng phân thức Chương 2: Một dạng bất đẳng thức xoay vòng (Xây dựng bất đẳng thức với các trường hợp đơn giản, tổng quát bài toán)
Chuyên đề bất đẳng thức - Nguyễn Tất Thu
Tài liệu hướng dẫn các kỹ thuật giải bất đẳng thức và giới thiệu các bất đẳng thức cơ bản thường được sử dụng, tài liệu do thầy Nguyễn Tất Thu biên soạn. Các nội dung có trong tài liệu: Chương 1 . MỘT SỐ VẤN ĐỀ CƠ BẢN VỀ BẤT ĐẲNG THỨC  1. Khái niệm và các tính chất của bất đẳng thức 2. Một số vấn đề cấn lưu ý khi giải bài toán về bất đẳng thức 2.1. Dự đoán dấu “=” xảy ra: Trong chứng minh bất đẳng thức, việc dự đoán dấu “=” xảy ra khi nào có ý nghĩa rất quan trọng. Trong một số trường hợp, việc dự đoán dấu “=” xảy ra giúp định hướng tìm lời giải. Thông thường, với các bất đẳng thức đối xứng ba biến thì đẳng thức xảy ra khi ba biến bằng nhau, với các bất đẳng thức hoán vị thì đẳng thức có khi hai biến bằng nhau, với các bất đẳng thức có biến thuộc đoạn [α; β] thì đẳng thức xả ra khi có một biến bằng α hoặc β. 2.2. Kĩ thuật chuẩn hóa  [ads] Chương 2 . CÁC BẤT ĐẲNG THỨC CỔ ĐIỂN 1. Bất đẳng thức AM – GM Bất đẳng thức AM − GM là bất đẳng thức cổ điển được sử dụng nhiều trong các bài toán chứng minh bất đẳng thức. Ta biết trung bình cộng của n số thực a1, a2 ··· an là số (a1 + a2 +··· + an)/n và trung bình nhân của n số đó là (a1.a2…an)^(1/n) (với điều kiện là (a1.a2…an)^(1/n) tồn tại). Bất đẳng thức AM − GM cho chúng ta đánh giá giữa trung bình cộng của các số thực không âm và trung bình nhân của chúng. 2. Bất đẳng thức Cauchy – Schwarz 3. Bất đẳng thức Schur
Bí kíp bất đẳng thức - Nguyễn Thế Lực
Tài liệu gồm 16 trang trình bày cách tìm hướng giải cho bài toán bất đẳng thức nhờ sự trợ giúp của máy tính cầm tay Casio, tài liệu do tác giả Nguyễn Thế Lực biên soạn. + Phần 1: Các kiến thức cơ bản cần nắm vững 1. Bất đẳng thức Cô-si cho 3 số không âm 2. Một số bất đẳng thức phụ cần biết 3. Phân tích cấu trúc BĐT trong đề thi đại học 4. Hướng làm 1 bài BĐT 5. Vai trò của máy tính Casio và cơ sở của phương pháp + Phần 2: Các BĐT 2 biến trong đề thi [ads]