Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập chuyên đề hàm số

Nội dung Lý thuyết và bài tập chuyên đề hàm số Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề hàm sốCHỦ ĐỀ 1: HÀM SỐ BẬC NHẤTCHỦ ĐỀ 2: HÀM SỐ Y = AXCHỦ ĐỀ 3: HÀM SỐ Y = AX + BCHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Lý thuyết và bài tập chuyên đề hàm số Tài liệu này bao gồm 55 trang lý thuyết quan trọng và hướng dẫn cách giải các bài toán liên quan đến hàm số và đồ thị hàm số như y = ax, y = ax + b, y = ax^2, trong chương trình Toán lớp 9. Đây là tài liệu phù hợp để ôn luyện và nâng cao kiến thức Toán của học sinh lớp 9, bồi dưỡng học sinh giỏi môn Toán, và luyện thi vào lớp 10. Chi tiết nội dung tài liệu lý thuyết và bài tập chuyên đề hàm số: CHỦ ĐỀ 1: HÀM SỐ BẬC NHẤT Nếu y phụ thuộc vào x và mỗi giá trị của x tương ứng với duy nhất một giá trị của y, thì y được gọi là hàm số của x. Đồ thị của hàm số y = f(x) là tập hợp các điểm biểu diễn các cặp giá trị (x;f(x)) trên mặt phẳng tọa độ. Y là hàm hằng nếu y luôn nhận một giá trị không đổi khi x thay đổi. Hàm số đồng biến và hàm số nghịch biến. CHỦ ĐỀ 2: HÀM SỐ Y = AX Hàm số y = ax (a khác 0) xác định với mọi số thực a. Đồ thị của hàm số y = ax là một đường thẳng đi qua gốc tọa độ. Hàm số y = ax đồng biến khi a > 0 và nghịch biến khi a < 0. CHỦ ĐỀ 3: HÀM SỐ Y = AX + B Hàm số bậc nhất: y = ax + b, với a và b là số thực và a khác 0. Hàm số y = ax + b (a khác 0) xác định với mọi số thực. Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0. Đồ thị của hàm số bậc nhất là một đường thẳng cắt cả hai trục tọa độ. CHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Hàm số y = ax^2 (a khác 0) xác định với mọi x thuộc R. Nếu a > 0, hàm số nghịch biến với x < 0, đồng biến với x > 0, và bằng 0 với x = 0. Nếu a < 0, hàm số đồng biến với x < 0, nghịch biến với x > 0, và bằng 0 với x = 0. Đồ thị của hàm số là một parabol đi qua gốc tọa độ và có trục tung là trục đối xứng. Đây là những kiến thức căn bản và quan trọng về hàm số mà học sinh cần nắm vững để có thể giải quyết các bài toán Toán hiệu quả. Hãy ôn tập và áp dụng những kiến thức này vào thực hành để nâng cao trình độ Toán của bạn!

Nguồn: sytu.vn

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phươngTóm tắt lý thuyếtBài tập và dạng toánBài tập thực hành Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phương Tài liệu này bao gồm 14 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến việc kết hợp giữa phép chia và phép khai phương trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng hiểu và tự kiểm tra kiến thức của mình. Tóm tắt lý thuyết 1. Định lý quan trọng: Với mọi số A và B khác 0, ta có A^2 = B^2 khi và chỉ khi A = B hoặc A = -B. 2. Quy tắc khai phương và chia các căn bậc hai: Hướng dẫn cụ thể cách khai phương một thương và chia căn bậc hai của các số dương. Bài tập và dạng toán Để giúp học sinh ôn tập và nắm vững kiến thức, tài liệu cung cấp các dạng toán phổ biến như thực hiện phép tính, rút gọn biểu thức và giải phương trình. Mỗi dạng toán đều có cách giải chi tiết để học sinh hiểu rõ từng bước giải quyết. Cụ thể: Dạng 1: Thực hiện phép tính theo công thức khai phương một thương. Dạng 2: Rút gọn biểu thức bằng quy tắc khai phương một thương. Dạng 3: Giải phương trình chứa căn thức, lưu ý các điều kiện đi kèm. Bài tập thực hành Bên cạnh các dạng toán, tài liệu còn cung cấp bài tập trắc nghiệm và bài tập về nhà để học sinh tự luyện tập và kiểm tra kỹ năng của mình. Đồng thời, file Word cung cấp sẵn cho giáo viên để dễ dàng in ấn và sử dụng trong giảng dạy.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.
Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.
Tóm tắt lý thuyết và một số dạng toán đường tròn Nguyễn Ngọc Dũng
Nội dung Tóm tắt lý thuyết và một số dạng toán đường tròn Nguyễn Ngọc Dũng Bản PDF Nội dung của tài liệu được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tóm tắt lý thuyết và một số dạng toán đường tròn, nhằm giúp học sinh lớp 9 hiểu tốt chương trình Hình học 9 chương 2 từ sách giáo khoa Toán lớp 9 tập 1. Tài liệu gồm 17 trang, chia thành các phần như sau:1. Sự xác định đường tròn và tính chất đối xứng của đường tròn: Phần này giúp học sinh hiểu cách chứng minh các điểm cùng thuộc một đường tròn, cách chứng minh các điểm đã cho cách đều một điểm, và tính chất của tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.2. Đường kính và dây của đường tròn, liên hệ giữa dây và khoảng cách từ tâm đến dây: Phần này giúp học sinh hiểu cách chứng minh hai đoạn thẳng bằng nhau, hai dây bằng nhau, và mối quan hệ giữa các đoạn thẳng trong đường tròn. 3. Vị trí tương đối của đường tròn và đường thẳng, tiếp tuyến của đường tròn: Phần này giúp học sinh hiểu cách tính độ dài một đoạn tiếp tuyến, cách chứng minh một đường thẳng là tiếp tuyến của đường tròn, và tính chất của hai tiếp tuyến cắt nhau.4. Vị trí tương đối của hai đường tròn: Phần này giúp học sinh hiểu vị trí của hai đường tròn đối với nhau và các tính chất liên quan.Tài liệu này đem đến cho học sinh những kiến thức cơ bản và quan trọng về đường tròn, giúp họ hiểu rõ hơn về chương trình Hình học lớp 9 và có thể áp dụng vào việc giải các bài toán liên quan. Nhờ cách trình bày cụ thể và dễ hiểu, tài liệu sẽ giúp học sinh nắm vững kiến thức một cách hiệu quả.