Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Dương Quảng Hàm Hưng Yên

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Dương Quảng Hàm Hưng Yên Bản PDF Sáng thứ Năm ngày 19 tháng 12 năm 2019, trường THPT Dương Quảng Hàm, tỉnh Hưng Yên tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Dương Quảng Hàm – Hưng Yên (mã đề 001 và mã đề 126) gồm có 06 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp tự luận, phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 05 câu, chiếm 40% tổng số điểm, học sinh có 90 phút để hoàn thành bài thi HKI Toán lớp 10, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường Dương Quảng Hàm – Hưng Yên : + Cho hệ phương trình (I): ax + by = c (1) và a’x + b’y = c’ (2) với phương trình (1) và (2) là phương trình bậc nhất hai ẩn. Hãy chọn khẳng định đúng. A. Giải hệ (I) là tìm một nghiệm chung của phương trình (1) và (2). B. Nghiệm chung của phương trình (1) và (2) được gọi là nghiệm của hệ (I). C. Phương trình (1) và (2) có vô số nghiệm nên hệ (I) có vô số nghiệm. D. Nếu phương trình (1) và (2) có nghiệm chung thì nghiệm chung đó phải là (0;0). [ads] + Trong các mệnh đề sau, mệnh đề nào là mệnh đề phủ định của mệnh đề “Vẫn còn có học sinh trường THPT Dương Quảng Hàm đi xe đạp điện không đội mũ bảo hiểm”. A. Không có học sinh nào của trường THPT Dương Quảng Hàm đi xe đạp điện đội mũ bảo hiểm. B. Có học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đội mũ bảo hiểm. C. Mọi học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đều đội mũ bảo hiểm. D. Mọi học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đều không đội mũ bảo hiểm. + Khách sạn A có 50 phòng. Mỗi phòng cho thuê với giá 400.000đ thì khách sạn kín phòng. Biết nếu cứ mỗi lần tăng giá thuê một phòng 20.000đ thì khách sạn có thêm 2 phòng trống. Bạn hãy giúp Giám đốc khách sạn A chọn giá phòng mới đề thu nhập của khách sạn trong ngày là lớn nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Du - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Hoàng Hoa Thám - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Lý Thái Tổ - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Tìm m để phương trình có hai nghiệm thỏa điều kiện. + Tìm tập xác định của các hàm số. + Xét sự biến thiên và vẽ đồ thị của hàm số: y = 2×2 – 4x + 2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường TH Thực hành Sài Gòn - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).