Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa cung và dây
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa cung và dây Bản PDF Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa cung và dây bao gồm 07 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề này. Trong tài liệu, chúng ta sẽ tìm hiểu về hai định lí quan trọng. Định lí 1 khẳng định rằng hai cung bằng nhau thì căng hai dây bằng nhau, và ngược lại. Định lí 2 cho biết rằng cung lớn hơn sẽ căng dây lớn hơn, và dây lớn hơn sẽ căng cung lớn hơn. Thêm vào đó, tài liệu cũng giải thích rõ ràng về các trường hợp bổ sung như: hai cung bị chắn giữa hai dây song song bằng nhau, đường kính đi qua trung điểm của cung hay dây sẽ gặp những tính chất đặc biệt như đi qua điểm chính giữa của cung hay dây, hoặc vuông góc với dây hoặc cung. Bên cạnh đó, tài liệu cũng cung cấp file WORD dành cho giáo viên với các bài tập thực hành để học sinh ôn tập và kiểm tra kiến thức của mình. Điều này giúp học sinh hiểu rõ hơn về liên hệ giữa cung và dây trong đồ họa hình học. Với tài liệu này, học sinh sẽ được hướng dẫn một cách chi tiết, dễ hiểu và thú vị về chủ đề liên hệ giữa cung và dây trong môn Toán lớp 9.
Tài liệu lớp 9 môn Toán chủ đề tứ giác nội tiếp
Nội dung Tài liệu lớp 9 môn Toán chủ đề tứ giác nội tiếp Bản PDF - Nội dung bài viết Tài liệu Tổng hợp Toán lớp 9 - Chủ đề Tứ giác nội tiếp Tài liệu Tổng hợp Toán lớp 9 - Chủ đề Tứ giác nội tiếp Để giúp các em học sinh lớp 9 nắm vững kiến thức về tứ giác nội tiếp, tài liệu này bao gồm 19 trang thông tin chi tiết về chủ đề này. Bạn sẽ được cung cấp các kiến thức cần nhớ, các dạng toán và bài tập thực hành. A. Lý thuyết 1. Định nghĩa: Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn. 2. Các tính chất: Tổng số đo hai góc đối diện bằng 180 độ. Nếu tứ giác có tổng số đo hai góc đối diện bằng 180 độ, tứ giác đó nội tiếp đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp: Tứ giác có tổng hai góc đối bằng 180 độ. Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. Tứ giác có bốn đỉnh cách đều một điểm cố định, đó là tâm của đường tròn ngoại tiếp tứ giác. Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α. B. Bài tập Tài liệu cung cấp file WORD dành cho thầy cô giáo để sử dụng trong việc giảng dạy và làm bài tập thêm cho học sinh. Với tài liệu này, việc học và ôn tập chủ đề tứ giác nội tiếp sẽ trở nên dễ dàng và hiệu quả hơn. Hy vọng rằng các em sẽ nắm vững kiến thức và tự tin khi giải các bài tập liên quan đến chủ đề này.
Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn
Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu này gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết: 1. Khái niệm phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn \(ax + by = c\) là phương trình có dạng \(ax + by = c\) (trong đó \(a\), \(b\), \(c\) là các số cho trước và \(a \neq 0\) hoặc \(b \neq 0\). Nếu điểm \(M(x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì \(M(x, y) (0, 0)\) là một nghiệm của phương trình. Trong mặt phẳng tọa độ \(Oxy\), mỗi nghiệm \(x, y (0, 0)\) của phương trình \(ax + by = c\) được biểu diễn bởi một điểm có tọa độ \((x, y) (0, 0)\) trong đó \(x\) là hoành độ và \(y\) là tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình \(ax + by = c\) luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng \(d: ax + by = c\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = b - \frac{c}{a}x\) hoặc \(y = \frac{c}{b}\) khi đó đường thẳng \(d\) cắt cả hai trục tọa độ. Đường thẳng \(d\) là đồ thị hàm số: \(y = \frac{-ax + c}{b}\). B. Bài tập và các dạng toán: Dạng 1: Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực \( (x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì nó được gọi là nghiệm của phương trình \(ax + by = c\). Dạng 2: Tìm điều kiện của tham số để đường thẳng \(ax + by = c\) thỏa mãn điều kiện cho trước. Cách giải: Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Dạng 3: Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình \(ax + by = c\), ta làm như sau: Bước 1: Tìm một nghiệm nguyên \( (x, y) (0, 0)\) của phương trình. Bước 2: Đưa phương trình về dạng \(ax - x + by - y = 0\) từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM BÀI TẬP VỀ NHÀ File WORD (dành cho quý thầy, cô):
Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn
Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết A. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu học Toán lớp 9 - Hệ hai phương trình bậc nhất hai ẩn Tài liệu này gồm 11 trang, cung cấp kiến thức cơ bản, các dạng toán và bài tập liên quan đến chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Mỗi bài toán được kèm theo đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết 1. Khái niệm về hệ phương trình bậc nhất hai ẩn Hệ phương trình bậc nhất hai ẩn có dạng ax + by = c và a'x + b'y = c'. Trong đó, a, b, a', b' là các số thực và x, y là các ẩn. Nếu hai phương trình có nghiệm chung (x, y), thì (x, y) được gọi là nghiệm của hệ phương trình. Nếu không có nghiệm chung, hệ phương trình sẽ là vô nghiệm. Giải hệ phương trình là tìm tất cả các nghiệm của hệ đó. 2. Minh họa hình học của tập nghiệm của hệ phương trình bậc nhất hai ẩn Tập nghiệm của hệ phương trình được biểu diễn bởi các điểm chung của hai đường thẳng. Nếu hai đường thẳng cắt nhau, hệ phương trình có một nghiệm duy nhất. Nếu hai đường thẳng song song, hệ phương trình sẽ vô nghiệm. Nếu hai đường thẳng trùng nhau, hệ phương trình sẽ có vô số nghiệm. 3. Tổng quát về hệ phương trình bậc nhất hai ẩn Hệ phương trình có nghiệm duy nhất khi hệ số không bằng nhau. Hệ phương trình vô nghiệm khi hệ số bằng nhau nhưng hệ số tự do không bằng nhau. Hệ phương trình có vô số nghiệm khi hệ số và hệ số tự do đều bằng nhau. 4. Hệ phương trình tương đương Hai hệ phương trình được xem là tương đương nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán Dạng 1: Dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn Giúp học sinh xác định số nghiệm có thể của hệ phương trình dựa vào các hệ số. Dạng 2: Kiểm tra một cặp số có phải là nghiệm của hệ phương trình hay không Gợi ý cách xác định xem một cặp số có phải là nghiệm của hệ phương trình hay không. Dạng 3: Giải hệ phương trình bằng phương pháp đồ thị Hướng dẫn vẽ đồ thị của hai đường thẳng và xác định nghiệm của hệ phương trình từ đó. Bài tập trắc nghiệm và bài tập về nhà cũng được cung cấp để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình. Tài liệu còn được cung cấp dưới dạng file Word để giáo viên dễ dàng sử dụng trong quá trình giảng dạy.