Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm, tích phân và ứng dụng - Nguyễn Chín Em

Tài liệu gồm 827 trang được biên soạn bởi thầy Nguyễn Chín Em bao gồm kiến thức trọng tâm, câu hỏi trắc nghiệm có đáp án và lời giải chi tiết chủ đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Khái quát nội dung tài liệu nguyên hàm, tích phân và ứng dụng – Nguyễn Chín Em: 1. NGUYÊN HÀM A. KIẾN THỨC TRỌNG TÂM 1. Nguyên hàm và tính chất. 1.1 Nguyên hàm. 1.2 Tính chất. 2. Phương pháp tính nguyên hàm. 2.1 Phương pháp tính nguyên hàm đổi biến số. 2.2 Phương pháp tính nguyên hàm từng phần. 2.3 Bảng nguyên hàm cơ bản. 2.4 Bảng nguyên hàm mở rộng. 3. Các dạng toán và bài tập. 3.1 Tính nguyên hàm bằng bảng nguyên hàm. 3.2 Tìm nguyên hàm bằng phương pháp đổi biến số. 3.3 Nguyên hàm từng phần. B. CÂU HỎI TRẮC NGHIỆM : Nhận biết, Thông hiểu, Vận dụng thấp, Vận dụng cao. [ads] 2. TÍCH PHÂN A. KIẾN THỨC TRỌNG TÂM 1. Khái niệm tích phân. 1.1 Định nghĩa tích phân. 1.2 Tính chất của tích phân. 2. Phương pháp tính tích phân. 2.1 Phương pháp đổi biến số. 2.2 Phương pháp tích phân từng phần. 3. Các dạng toán và bài tập. 3.1 Tích phân cơ bản và tính chất tính phân. 3.2 Tích phân hàm số phân thức hữu tỉ. 3.3 Tính chất của tích phân. 3.4 Tích phân hàm số chứa dấu giá trị tuyệt đối. 3.5 Phương pháp đổi biến số. 3.6 Tích phân từng phần. B. CÂU HỎI TRẮC NGHIỆM : Nhận biết, Thông hiểu, Vận dụng thấp, Vận dụng cao. 3. ỨNG DỤNG TÍCH PHÂN A. TÍNH DIỆN TÍCH HÌNH PHẲNG 1. Hình phẳng giới hạn bởi một đường cong và trục hoành. 2. Hình phẳng giới hạn bởi hai đường cong. B. TÍNH THỂ TÍCH KHỐI TRÒN XOAY C. DẠNG TOÁN VÀ BÀI TẬP 1. Diện tích hình phẳng và bài toán liên quan. 1.1 Diện tích hình phẳng. 1.2 Tìm vận tốc, gia tốc, quãng đường trong vật lí. 2. Thể tích. 2.1 Thể tích của vật thể. 2.2 Tính thể tích của vật thể tròn xoay. D. CÂU HỎI TRẮC NGHIỆM : Nhận biết, Thông hiểu, Vận dụng thấp, Vận dụng cao.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng của tích phân - Lê Bá Bảo
Tài liệu gồm 31 trang, trình bày lý thuyết, các dạng toán, ví dụ mẫu và bài tập về chuyên đề ứng dụng của tích phân. Nội dung tài liệu gồm: Ứng dụng 1: TÍNH DIỆN TÍCH HÌNH PHẲNG I. LÝ THUYẾT + Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f(x) liên tục trên đoạn [a; b], trục hoành và hai đường thẳng x = a, x = b. + Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f(x), g(x) liên tục trên [a; b] và hai đường thẳng x = a, x = b. + Bài toán 3: Hình phẳng giới hạn bởi nhiều hơn hai đường cong. II. PHƯƠNG PHÁP Phương pháp: Sử dụng tính chất cơ bản của tích phân (thêm cận trung gian) để tính tích phân chưa dấu giá trị tuyệt đối (GTTĐ). III. BÀI TẬP TRẮC NGHIỆM MINH HỌA Gồm các bài toán ứng dụng của tích phân để tính diện tích hình phẳng có lời giải chi tiết. IV. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN Gồm 60 câu trắc nghiệm về ứng dụng của tích phân để tính diện tích hình phẳng. [ads] Ứng dụng 2: TÍNH THỂ TÍCH VẬT THỂ I. LÝ THUYẾT + Bài toán 1: Tính thể tích của vật thể. + Bài toán 2: Tính thể tích khối tròn xoay (Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA Gồm các bài toán ứng dụng của tích phân để tính thể tích vật thể có lời giải chi tiết. III. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN Gồm 51 câu trắc nghiệm về ứng dụng của tích phân để tính thể tích vật thể.
Tích phân hạn chế máy tính cầm tay - Đặng Việt Đông
Tài liệu gồm 18 trang, trình bày 124 bài tập trắc nghiệm tích phân hạn chế máy tính cầm tay – đó là các bài tập tích phân mà máy tính Casio khó can thiệp vào cách giải, các bài toán đều có đáp án. Tài liệu được biên soạn bởi thầy Đặng Việt Đông.
Nguyên hàm, tích phân chống casio - phân thức và đổi biến - Mẫn Ngọc Quang
Tài liệu gồm 24 trang, trình bày một số dạng toán nguyên hàm, tích phân mà máy tính Casio khó can thiệp vào cách giải. Tài liệu trình bày 4 dạng toán: + Dạng 1: Đồng nhất hệ số – mẫu có dạng tích + Dạng 2: Nhảy lầu + Dạng 3: Mẫu số có chứa biểu thức bình phương + Dạng 4: Bậc tử số lớn hơn mẫu [ads]
Chinh phục nguyên hàm - tích phân từ A đến Z - Nguyễn Hữu Bắc
Sách gồm 480 trang trình bày chi tiết hầu hết những dạng toán nguyên hàm – tích phân thường gặp trong chương trình Toán 12. Nội dung sách : Chương mở đầu + Mối liên hệ giữa nguyên hàm và tích phân + Ý nghĩa A. Lý thuyết Chương I. Nguyên hàm I. Khái niệm nguyên hàm II. Tính chất nguyên hàm Chương II. Tích phân I. Khái niệm về tích phân II. Tính chất của tích phân III. Các phương pháp tính nguyên hàm – tích phân thường gặp Chương III. Bảng nguyên hàm các hàm số cơ bản Chương IV. Cách tạo dạng tích phân B. Phương pháp tìm nguyên hàm – tích phân Chương I. Phương pháp vi phân Chương II. Phương pháp bảng nguyên hàm Chương III. Phương pháp đổi biến số I. Phương pháp II. Đổi biến số hàm vô tỷ III. Đổi biến hàm đa thức bậc cao IV. Đổi biến hàm lượng giác V. Hàm dưới dấu tích phân chứa các biểu thức bậc nhất của sinx, cosx VI. Đổi biến dựa vào cận Chương IV. Phương pháp tích phân từng phần I. Kỹ thuật chọn hệ số C II. Kỹ thuật tính nhanh III. Phân dạng – phương pháp [ads] C. Nguyên hàm – Tích phân các loại hàm số Chương I. Nguyên hàm – tích phân các hàm đa thức I. Hàm số tìm nguyên hàm II. Phương pháp III. Bài tập vận dụng Chương II. Tích phân hàm hữu tỉ I. Hàm số tìm nguyên hàm II. Phương pháp III. Kỹ thuật nhẩm hệ số trong đồng nhất thức IV. Nguyên tắc giải V. Bài tập áp dụng Chương III. Tích phân hàm vô tỉ Chương IV. Tích phân hàm lượng giác I. Hàm số tìm nguyên hàm II. Phương pháp III. Các công thức lượng giác thường sử dụng IV. Các dạng nguyên hàm lượng giác thường gặp Chương V. Tích phân hàm số mũ – logarit Chương VI. Tích phân hàm trị tuyệt đối Chương VII. Tích phân liên kết Chương VIII. Tích phân trong đề thi đại học từ 2002 đến 2015 Chương IX. Tích phân trong các đề thi thử đại học Chương X. Những bài toán tích phân khó D. Ứng dụng tích phân Chương I. Ứng dụng tích phân để tính diện tích I. Diện tích hình phẳng giới hạn bởi các đường cong II. Diện tích hình tròn III. Diện tích hình Elip Chương II. Ứng dụng tích phân để tính thể tích I. Thể tích V sinh bởi diện tích S (tạo bởi một đường cong với trục) II. Thể tích V sinh bởi diện tích S (tạo bởi từ hai đường cong) Chương III. Sai lầm khi tính tích phân