Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2)

Tài liệu gồm 240 trang, phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2) có đáp án, giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 giai đoạn học kì 2. MỤC LỤC : Phần I GIẢI TÍCH. Bài 1. Nguyên hàm 6. + Dạng 1.1: Nguyên hàm cơ bản 6. Bảng đáp án 10. + Dạng 1.2: Nguyên hàm của hàm số hữu tỷ 10. Bảng đáp án 12. + Dạng 1.3: Nguyên hàm thỏa điều kiện cho trước 12. Bảng đáp án 14. + Dạng 1.4: Nguyên hàm của hàm số đạo hàm f′(x) 14. Bảng đáp án 16. + Dạng 1.5: Nguyên hàm của hàm số phân nhánh 17. Bảng đáp án 17. + Dạng 1.6: Phương pháp đổi biến số 18. Bảng đáp án 21. + Dạng 1.7: Phương pháp từng phần 21. Bảng đáp án 24. + Dạng 1.8: Nguyên hàm kết hợp đổi biến và từng phần 25. Bảng đáp án 25. + Dạng 1.9: Nguyên hàm của hàm ẩn 25. Bảng đáp án 29. Bài 2. TÍCH PHÂN 29. + Dạng 2.1: Tích phân sử dụng định nghĩa – tính chất 29. Bảng đáp án 33. + Dạng 2.2: Tích phân cơ bản 34. Bảng đáp án 39. + Dạng 2.3: Tích phân chứa trị tuyệt đối 39. Bảng đáp án 40. + Dạng 2.4: Tích phân đổi biến số 40. Bảng đáp án 47. + Dạng 2.5: Tích phân từng phần 48. Bảng đáp án 53. + Dạng 2.6: Tích phân kết hợp đổi biến và từng phần 54. Bảng đáp án 55. + Dạng 2.7: Tích phân hàm hữu tỷ 55. Bảng đáp án 56. + Dạng 2.8: Tích phân hàm ẩn 56. Bảng đáp án 61. + Dạng 2.9: Tích phân hàm phân nhánh 61. Bảng đáp án 62. + Dạng 2.10: Tích phân dựa vào đồ thị 62. Bảng đáp án 64. Bài 3. Ứng dụng tích phân 65. A Diện tích hình phẳng 65. + Dạng 3.1: Câu hỏi lý thuyết 65. Bảng đáp án 70. + Dạng 3.2: Diện tích hình phẳng được giới hạn các hàm số 70. Bảng đáp án 90. + Dạng 3.3: Bài toán chuyển động 91. Bảng đáp án 93. + Dạng 3.4: Toán thực tế – ứng dụng diện tích 93. Bảng đáp án 98. B THỂ TÍCH KHỐI TRÒN XOAY 98. + Dạng 3.5: Thể tích khối tròn xoay được giới hạn các hàm số 98. Bảng đáp án 105. + Dạng 3.6: Thể tích theo mặt cắt S(x) 105. Bảng đáp án 107. + Dạng 3.7: Bài toán thực tế ứng dụng thể tích 107. Bảng đáp án 110. Bài 4. SỐ PHỨC 111. A Khái niệm số phức 111. + Dạng 4.1: Câu hỏi lý thuyết 111. Bảng đáp án 111. + Dạng 4.2: Phần thực, phần ảo, môđun, số phức liên hợp 111. Bảng đáp án 114. + Dạng 4.3: Biểu diễn số phức 114. Bảng đáp án 118. B Các phép toán số phức 119. + Dạng 4.4: Câu hỏi lý thuyết 119. Bảng đáp án 119. + Dạng 4.5: Thực hiện các phép toán trên số phức 119. Bảng đáp án 122. + Dạng 4.6: Xác định các yếu tố số phức 122. Bảng đáp án 125. + Dạng 4.7: Tìm số phức thỏa điều kiện 125. Bảng đáp án 128. C Biểu diễn hình học 128. + Dạng 4.8: Biểu diễn hình học số phức qua các phép toán 128. Bảng đáp án 130. + Dạng 4.9: Tập hợp số phức 131. Bảng đáp án 133. D Phương trình bậc hai 133. + Dạng 4.10: Phương trình bậc 2 với hệ số thực – Tính toán biểu thức nghiệm 133. Bảng đáp án 137. + Dạng 4.11: Định lí Vi – et trong số phức 137. Bảng đáp án 139. + Dạng 4.12: Biểu diễn hình học nghiệm của phương trình bậc hai 139. Bảng đáp án 140. + Dạng 4.13: Bài toán chứa tham số m 141. Bảng đáp án 142. E CỰC TRỊ SỐ PHỨC 142. + Dạng 4.14: Sử dụng Môđun – liên hợp 142. Bảng đáp án 143. + Dạng 4.15: Phương pháp hình học 143. Bảng đáp án 145. + Dạng 4.16: Phương pháp đại số 145. Bảng đáp án 147. Phần II HÌNH HỌC. Bài 1. HỆ TRỤC TỌA ĐỘ 149. + Dạng 1.1: Tọa độ điểm, tọa độ véc – tơ 149. Bảng đáp án 153. + Dạng 1.2: Tích vô hướng và ứng dung 153. Bảng đáp án 157. + Dạng 1.3: Tích có hướng và ứng dụng 157. Bảng đáp án 160. + Dạng 1.4: Mặt cầu 160. Bảng đáp án 164. + Dạng 1.5: Phương trình mặt cầu 164. Bảng đáp án 169. Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG 169. + Dạng 2.1: Xác định véc – tơ pháp tuyến 169. Bảng đáp án 170. + Dạng 2.2: Phương trình mặt phẳng 170. Bảng đáp án 174. + Dạng 2.3: Vị trí giữa hai mặt phẳng 175. Bảng đáp án 176. + Dạng 2.4: Tìm tọa độ điểm liên quan mặt phẳng 176. Bảng đáp án 177. + Dạng 2.5: Khoảng cách từ 1 điểm đến mặt phẳng và bài toán liên quan 177. Bảng đáp án 180. + Dạng 2.6: Bài toán liên quan mặt phặt phẳng – mặt cầu 180. Bảng đáp án 184. + Dạng 2.7: Phương trình mặt cầu liên quan mặt phẳng 184. Bảng đáp án 185. + Dạng 2.8: Phương trình mặt phẳng theo đoạn chắn 186. Bảng đáp án 188. + Dạng 2.9: Phương trình mặt phẳng liên quan đến góc 188. Bảng đáp án 190. + Dạng 2.10: Hình chiếu vuông góc của điểm lên mặt phẳng 190. Bảng đáp án 191. + Dạng 2.11: Bài toán liên quan cực trị 191. Bảng đáp án 196. Bài 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 196. + Dạng 3.1: Xác định véc – tơ chỉ phương 196. Bảng đáp án 198. + Dạng 3.2: Phương trình đường thẳng 198. Bảng đáp án 206. + Dạng 3.3: Phương trình mặt phẳng liên quan đường thẳng 206. Bảng đáp án 211. + Dạng 3.4: Điểm liên quan đường thẳng 212. Bảng đáp án 214. + Dạng 3.5: Khoảng cách – góc 215. Bảng đáp án 216. + Dạng 3.6: Vị trị tương đối giữa hai đường thẳng 216. Bảng đáp án 218. + Dạng 3.7: Vị trí tương đối giữa đường thẳng và mặt phẳng 218. Bảng đáp án 221. + Dạng 3.8: Bài toán liên quan: Mặt phẳng – đường thẳng – mặt cầu 221. Bảng đáp án 227. + Dạng 3.9: Hình chiếu của điểm lên đường thẳng 227. Bảng đáp án 229. + Dạng 3.10: Bài toán liên quán: Góc – khoảng cách 230. Bảng đáp án 233. + Dạng 3.11: Bài toán liên quan đến cực trị 233. Bảng đáp án 239.

Nguồn: toanmath.com

Đọc Sách

Bài tập tích phân vận dụng cao có lời giải chi tiết - Lương Văn Huy
Tài liệu gồm 35 trang được thầy Lương Văn Huy biên soạn tuyển tập các bài tập trắc nghiệm tích phân vận dụng cao có lời giải chi tiết, các bài toán được trích từ các đề thi thử môn Toán, lời giải được trình bày theo cách tự luận để các em hiểu bản chất bài toán, tài liệu phù hợp để ôn luyện điểm 8 – 9 – 10 trong đề thi THPT Quốc gia môn Toán. Xem thêm :  Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông
Bài tập tự luận và trắc nghiệm tích phân - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập tự luận và trắc nghiệm tích phân do thầy Đặng Ngọc Hiền biên soạn, có đáp án. Các bài tập được phân thành các dạng bài: Loại 1. Định nghĩa và tính chất của tích phân Loại 2. Tính tích phân bằng cách sử dụng bảng nguyên hàm Loại 3. Tính tích phân bằng phương pháp đổi biến số loại 1, loại 2 Loại 4. Tính tích phân bằng phương pháp tích phân từng phần Loại 5. Một số dạng tích phân đặc biệt [ads] Xem thêm : + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (196 trang) + Tính nhanh nguyên hàm – tích phân từng phần sử dụng sơ đồ đường chéo – Ngô Quang Chiến (7 trang) + Giải nhanh nguyên hàm, tích phân và ứng dụng bằng máy tính Casio – Hoàng Văn Bình (44 trang)
Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án
Tài liệu gồm 153 trang tuyển chọn bài tập trắc nghiệm Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng có đáp án, các bài toán được chọn lọc trong các đề thi thử môn Toán. Tài liệu được biên soạn được nhóm tác giả: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh. Nội dung tài liệu : §1. Nguyên hàm §2. Tích phân §3. Ứng dụng của tích phân trong tính diện tích hình phẳng §4. Ứng dụng của tích phân trong tính thể tích khối tròn xoay §5. Ứng dụng của tích phân vào các bài toán khác (ví dụ đồ thị của đạo hàm …) §6. Các bài toán thực tế [ads] Xem thêm các tài liệu hay về nguyên hàm, tích phân và ứng dụng: + 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên + Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng – Giáp Minh Đức Xem thêm một số tài liệu khác cùng tác giả: + Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit – Nguyễn Ngọc Dũng (Giải tích 12 chương 2) + Bài tập trắc nghiệm Hình học 12 chuyên đề nón – trụ – cầu (Hình học 12 chương 2)
Tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết
Tài liệu gồm 111 trang tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết, các bài tập với đầy đủ các dạng bài từ cơ bản đến nâng cao. Nội dung tài liệu : Phần A. Bài tập trắc nghiệm nguyên hàm có lời giải chi tiết + Dạng 1. Áp dụng công thức nguyên hàm cơ bản + Dạng 2. Phương pháp đổi biến số loại 1 tìm nguyên hàm (Đặt t = P(x)) + Dạng 3. Phương pháp đổi biến số loại 2 tìm nguyên hàm (Đặt x = Q(t)) + Dạng 4. Phương pháp từng phân để tìm nguyên hàm + Dạng 5. Tìm nguyên hàm của hàm số hữu tỉ + Dạng 6. Tìm nguyên hàm của hàm số lượng giác + Dạng 7. Phương pháp vi phân nguyên hàm Phần B. Bài tập trắc nghiệm nguyên hàm có đáp án [ads] Xem thêm :  Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng – Giáp Minh Đức (gồm 118 trang tổng hợp bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng có đáp án)