Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác

Tài liệu gồm 83 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển tập 198 câu vận dụng cao (VD – VDC) hàm số lượng giác và phương trình lượng giác, có đáp án và lời giải chi tiết; giúp học sinh khối 11 rèn luyện khi học tập chương trình Đại số và Giải tích 11 chương 1. Trích dẫn tài liệu tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác: + Gọi m/n là giá trị lớn nhất của a để bất phương trình √a3(x − 1)2 + √a(x − 1)2 6√4a3sin πx2 có ít nhất một nghiệm, trong đó m, n là các số nguyên dương và m/n là phân số tối giản. Tính giá trị của biểu thức P = 22m + n. + Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình cos 4x + 6 sinx cos x = m có hai nghiệm phân biệt trên đoạn h0;π4i. + Có bao nhiêu điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình (1 + sinx + cos x)tan(π − x) = sin 2x + 2 sinx + 2 cos x + 2?

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề phương trình lượng giác sơ cấp
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác sơ cấp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM + Loại 1: Phương trình sin x = m. + Loại 2: Phương trình cos x = m. + Loại 3: Phương trình tan x = m. + Loại 4: Phương trình cot x = m. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Tài liệu chủ đề hàm số lượng giác
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Tính tuần hoàn của hàm số lượng giác. 3) Tính chẵn lẻ của hàm số lượng giác. 4) Sự biến thiên và đồ thị các hàm số lượng giác. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tập xác định và tập giá trị của hàm số lượng giác. Dạng 2: Tính chẵn lẻ của hàm số lượng giác. Dạng 3: Chu kì của hàm số lượng giác. Dạng 4: Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tổng ôn chuyên đề cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 42 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chuyên đề cung và góc lượng giác, công thức lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 10 tổng ôn chương trình Đại số 10 chương 6. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Dấu của hàm số lượng giác. 3) Mối quan hệ giữa các cung lượng giác đặc biệt. 5) Công thức góc nhân đôi, nhân ba. 6) Công thức hạ bậc hai, bậc ba. 7) Công thức biến đổi tích sang tổng và ngược lại. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Hoàng Việt
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm (có đáp án) chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §1 – HÀM SỐ LƯỢNG GIÁC 1. A KIẾN THỨC CẦN NHỚ 1. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 2. + Dạng 1. Tìm tập xác định của hàm số lượng giác 2. + Dạng 2. Tính chẵn lẻ của hàm số 6. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 7. C BÀI TẬP TRẮC NGHIỆM 12. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 19. A KIẾN THỨC CẦN NHỚ 19. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 21. + Dạng 1. Giải các phương trình lượng giác cơ bản 21. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 23. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 25. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước 27. C BÀI TẬP TRẮC NGHIỆM 29. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 37. A KIẾN THỨC CẦN NHỚ 37. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 38. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 38. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 41. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 45. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 48. + Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x 50. C BÀI TẬP TRẮC NGHIỆM 51. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 59. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 59. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 59. + Dạng 2. Biến đổi asinx + bcosx 62. + Dạng 3. Biến đổi đưa về phương trình tích 64. + Dạng 4. Một số bài toán biện luận theo tham số 67. B BÀI TẬP TỰ LUYỆN 70. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 73. A Đề số 1 73. B Đề số 2 79. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 83.