Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu

Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

250 bài tập trắc nghiệm số phức chọn lọc - Nguyễn Văn Rin
Tài liệu gồm 27 trang với các bài toán trắc nghiệm số phức chọn lọc từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc. Trích dẫn tài liệu : + (ĐỀ MINH HỌA – 2017) Cho số phức z = 3 – 2i . Tìm phần thực và phần ảo của số phức z‾. A. Phần thực bằng -3 và phần ảo bằng -2i B. Phần thực bằng -3 và phần ảo bằng -2 C. Phần thực bằng 3 và phần ảo bằng 2i D. Phần thực bằng 3 và phần ảo bằng 2 [ads] + (ĐỀ THỬ NGHIỆM – 2017) Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z. A. Phần thực là -4 và phần ảo là 3 B. Phần thực là 3 và phần ảo là -4i C. Phần thực là 3 và phần ảo là -4 D. Phần thực là -4 và phần ảo là 3i + Trong các khẳng định sau, khẳng định nào sai? A. Tập hợp các điểm biểu diễn các số phức có môđun bằng 1 là đường tròn đơn vị (đường tròn có bán kính bằng 1, tâm là gốc tọa độ) B. Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện |z| ≤ 1 là phần mặt phẳng phía trong (kể cả biên) của đường tròn đơn vị C. Tập hợp các điểm biểu diễn các số phức có phần thực bằng 3 là một đường thẳng song song với trục hoành D. Tập hợp các điểm biểu diễn các số phức có phần thực và phần ảo thuộc khoảng (-1; 1) là miền trong của một hình vuông
160 bài tập trắc nghiệm số phức - Trần Đình Thiên
Tài liệu gồm 17  trang với phần tóm tắt lý thuyết, công thức tính và 160 bài tập trắc nghiệm số phức, tài liệu được biên soạn bởi tác giả Trần Đình Thiên nhằm bổ sung thêm các bài toán trắc nghiệm số phức chất lượng để các em luyện tập thêm trong quá trình học nội dung Giải tích 12 chương 4. Trích dẫn tài liệu 160 bài tập trắc nghiệm số phức – Trần Đình Thiên : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số ảo là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Hai đường thẳng y = ±x (trừ gốc toạ độ O). D. Đường tròn x^2 + y^2 = 1.
Tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao - Nguyễn Bảo Vương
Tài liệu gồm 95 trang tuyển chọn 416 bài tập trắc nghiệm số phức cơ bản và 235 bài tập trắc nghiệm số phức nâng cao có đáp án, tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương nhằm cung cấp thêm ngân hàng đề thi trắc nghiệm số phức cho giáo viên trong quá trình giảng dạy và giúp học sinh có thêm nguồn đề số phức tham khảo, rèn luyện trong quá trình học chương trình Giải tích 12 chương 4. PHẦN 1 : 416 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC CƠ BẢN Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Các phép tính về số phức: Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. Số phức và thuộc tính của nó: + Tìm phần thực và phần ảo z = a + bi, suy ra phần thực a, phần ảo b. + Biểu diễn hình học của số phức. Dạng toán 2. Biểu diễn hình học của số phức và ứng dụng. Dạng toán 3. Căn bậc hai của số phức và phương trình bậc hai. Định nghĩa về căn bậc hai của số phức và những điểm cần lưu ý. Hướng dẫn phương pháp tìm căn bậc hai của số phức. Phương trình bậc hai với hệ số phức và phương pháp giải, định lý Vi-et. PHẦN 2 : 235 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC NÂNG CAO – CỰC CAO Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Dạng toán 2. Dạng lượng giác của số phức. Công thức De – Moivre: Có thể nói công thức De – Moivre là một trong những công thức thú vị và là nền tảng cho một loạt công thức quan trọng khác sau này như phép luỹ thừa, khai căn số phức, công thức Euler. Dạng toán 3. Cực trị của số phức. [ads] Trích dẫn tài liệu tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao – Nguyễn Bảo Vương : + Trên tập số phức, cho phương trình sau: (z + i)^4 + 4z^2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau? 1. Phương trình vô nghiệm trên trường số thực. 2. Phương trình vô nghiệm trên trường số phức. 3. Phương trình không có nghiệm thuộc tập số thực. 4. Phương trình có bốn nghiệm thuộc tập số phức. 5. Phương trình chỉ có hai nghiệm là số phức. 6. Phương trình có hai nghiệm là số thực. + Cho số phức z thỏa |z – 1 + i| = 2. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 2. D. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 4. + Cho số phức z thỏa |z + 2| = |1 – z|. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn. D. Tập hợp điểm biểu diễn số phức z là một đường Elip.
Bài tập trắc nghiệm chuyên đề số phức - Đặng Việt Đông
Tài liệu gồm 36 trang được biên soạn bởi thầy Đặng Việt Đông bao gồm phần tóm tắt lý thuyết, công thức tính toán thường dùng và tuyển chọn các bài tập trắc nghiệm chuyên đề số phức thuộc chương trình Giải tích 12 chương 4. Các bài tập số phức trong tài liệu được phân loại dựa theo các dạng toán: + Số phức và các phép tính trên số phức. + Số phức và các tính chất. + Tìm số phức thỏa mãn điều kiện bài toán. + Số phức có môđun nhỏ nhất, lớn nhất (bài toán min – max số phức). + Phương trình, hệ phương trình trên tập số phức. + Biểu diễn hình học của số phức, tìm tập hợp điểm. [ads] Trích dẫn tài liệu bài tập trắc nghiệm chuyên đề số phức – Đặng Việt Đông : + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số thực âm là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Đường thẳng y = x (trừ gốc toạ độ O). D. Đường thẳng y = – x (trừ gốc toạ độ O). + Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa |z + 3 – 2i| là: A. Đường tròn tâm I(-3; 2), bán kính R = 4. B. Đường tròn tâm I(3; -2), bán kính R = 16. C. Đường tròn tâm I(3; -2), bán kính R = 4. D. Đường tròn tâm I(-3; 2), bán kính R = 16. + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = – 2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. B. Hai điểm A và B đối xứng với nhau qua trục hoành. C. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O. D. Hai điểm A và B đối xứng với nhau qua trục tung.