Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1

Tài liệu gồm 151 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Pi Latex, tuyển tập các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1. Mục lục : A GIẢI TÍCH 3. Chương 1 KHẢO SÁT & VẼ ĐỒ THỊ HÀM SỐ 5. Vấn đề 1 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN 6. Dạng 1 Xét tính đơn điệu của hàm số 7. Dạng 2 Tìm tham số để hàm y = (ax + b)/(cx + d) đơn điệu trên từng khoảng xác định 9. Dạng 3 Tìm tham số để hàm bậc ba y = ax3 + bx2 + cx + d đơn điệu trên R 10. Dạng 4 Tìm tham số m để hàm số đơn điệu trên K 11. Dạng 5 Dùng tính đơn điệu chứng minh bất đẳng thức 15. Vấn đề 2 CỰC TRỊ 24. Dạng 1 Tìm cực trị hàm số: cực đại và cực tiểu 25. Dạng 2 Tìm tham số m để hàm bậc ba có cực trị 27. Dạng 3 Tìm tham số m để hàm trùng phương có một hoặc ba cực trị 30. Dạng 4 Tìm tham số m để hàm số đạt cực trị tại điểm 32. Vấn đề 3 GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT 38. Dạng 1 Tìm GTLN, GTNN của hàm số trên đoạn [a; b] 39. Dạng 2 Tìm GTLN, GTNN của hàm số trên khoảng (a; b) 40. Dạng 3 Các bài toán vận dụng cao, toán thực tế min, max 41. Vấn đề 4 TIỆM CẬN 45. Vấn đề 5 KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ 46. Dạng 1 Các dạng đồ thị hàm số bậc ba y = ax3 + bx2 + cx + d 47. Dạng 2 Các dạng đồ thị của hàm số trùng phương y = ax4 + bx2 + c 48. Dạng 3 Hàm phân thức (ax + b)/(cx + d) 49. Vấn đề 6 PHƯƠNG TRÌNH TIẾP TUYẾN 54. Dạng 1 Cho tiếp điểm y − y0 = f0(x0)·(x − x0) 54. Dạng 2 Cho hệ số góc tiếp tuyến k = f0(x0) 55. Dạng 3 Cho điểm tiếp tuyến đi qua 56. Vấn đề 7 TƯƠNG GIAO ĐỒ THỊ 61. Dạng 1 Tìm giao điểm của 2 đồ thị y = f(x), y = g(x) 61. Dạng 2 Biện luận số nghiệm của phương trình dựa vào đồ thị 62. Dạng 3 (C): y = (ax + b)/(cx + d) cắt (d) tại 2 điểm phân biệt 63. Dạng 4 y = ax3 + bx2 + cx + d cắt (d) tại 3 điểm phân biệt 64. Dạng 5 (C): y = ax3 + bx2 + cx + d cắt trục hoành lập thành một cấp số cộng 65. Dạng 6 Tìm m để hàm trùng phương cắt (d) tại bốn điểm phân biệt 66. Vấn đề 8 ĐIỂM CỐ ĐỊNH CỦA HỌ ĐƯỜNG CONG 67. Vấn đề 9 ĐIỂM CÓ TỌA ĐỘ NGUYÊN CỦA ĐỒ THỊ 68. Vấn đề 10 ĐỒ THỊ HÀM CHỨA GIÁ TRỊ TUYỆT ĐỐI 70. Dạng 1 Trị tuyệt đối toàn phần y = |f(x)| (C0) 70. Dạng 2 Trị tuyệt đối cùa riêng x: y = f(|x|)(C0) 71. Dạng 3 Trị tuyệt đối cục bộ y = |u(x)| · v(x) (C0) 72. Vấn đề 11 TÍNH CHẤT ĐỒ THỊ HÀM F0(X) 73. Dạng 1 Tính đơn điệu của hàm số y = f(x) dựa vào đồ thị y = f0(x) 73. Dạng 2 Cực trị của hàm số y = f(x) dựa vào đồ thị y = f0(x) 74. ÔN TẬP CHƯƠNG I 80. Chương 2 LŨY THỪA, MŨ & LÔGARIT 83. Vấn đề 1 LŨY THỪA 84. Vấn đề 2 LÔGARIT 86. Vấn đề 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT 89. Vấn đề 4 PHƯƠNG TRÌNH MŨ 97. Vấn đề 5 PHƯƠNG TRÌNH LOGARIT 98. Vấn đề 6 BẤT PHƯƠNG TRÌNH MŨ 100. Vấn đề 7 BẤT PHƯƠNG TRÌNH LÔGARIT 102. Vấn đề 8 HỆ PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 107. Dạng 1 107. Vấn đề 9 BÀI TOÁN THỰC TẾ 108. Dạng 1 Lãi đơn 108. Dạng 2 Lãi kép 108. Dạng 3 Tiền gửi hàng tháng 108. Dạng 4 Vay vốn trả góp 109. Chương 3 NGUYÊN HÀM, TICH PHÂN & ỨNG DỤNG 111. Chương 4 SỐ PHỨC 113. B HÌNH HỌC 115. Chương 5 KHỐI ĐA DIỆN 117. Vấn đề 1 KHỐI ĐA DIỆN ĐỀU 118. Dạng 1 Khối đa diện lồi 118. Dạng 2 Năm khối đa diện đều 119. Vấn đề 2 KHỐI CHÓP 121. Dạng 1 Hình chóp có cạnh bên vuông góc với đáy 121. Dạng 2 Hình chóp có mặt bên vuông góc với mặt đáy 124. Dạng 3 Hình chóp đa giác đều, hình chóp đều 126. Vấn đề 3 KHỐI LĂNG TRỤ 131. Dạng 1 Lăng trụ đứng, lăng trụ xiên 131. Chương 6 NÓN, TRỤ & CẦU 137. Vấn đề 1 MẶT CẦU 137. Vấn đề 1 MẶT CẦU – KHỐI CẦU 138. Dạng 1 Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp 140. Dạng 2 Tính diện tích, thể tích mặt cầu 141. Vấn đề 2 MẶT NÓN 143. Vấn đề 3 MẶT TRỤ 147. Chương 7 TỌA ĐỘ TRONG KHÔNG GIAN 151.

Nguồn: toanmath.com

Đọc Sách

113 bài tập trắc nghiệm phương trình mặt phẳng - Huỳnh Công Dũng
Tài liệu gồm 15 trang với 113 bài tập trắc nghiệm thuộc chuyên đề phương trình mặt phẳng có đáp án.
Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu
Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).
81 bài tập trắc nghiệm phương pháp tọa độ trong không gian - Hà Hữu Hải
Tài liệu gồm 11 trang với các bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án. Trích dẫn tài liệu : + Trong không gian với hệ trục Oxyz, cho 3 điểm A(1; 0; 0), B(0; 2; 0), C(0; 0; 3). Viết phương trình mặt phẳng đi qua 3 điểm A, B, C. A. 6x – 3y + 2z – 6 = 0 B. 6x + 3y + 2z + 6 = 0 C. x + 2y + 3z – 1 = 0 D. 6x + 3y + 2z – 6 = 0 [ads] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(1; 1; 3), N(1; 1; 5), P(3; 0; 4). Phương trình nào sau đây là phương trình mặt phẳng đi qua điểm M và vuông góc với đường thẳng NP? A. x – y – z + 3 = 0 B. x – 2y – z − 0 = 0 C. 2x – y – z + 2 = 0 D. 2x – y + z – 4 = 0 + Phương trình mặt phẳng đi qua 3 điểm A(0; 0; 1), B(2; 1; -1), C(-1; -2; 0) là: A. 5x – 4y + 3z – 3 = 0 B. 5x – 4y + 3z – 9 = 0 C. 5x – y + 3z – 33 = 0 D. x – 4y + z – 6 = 0
Bài tập trắc nghiệm phương pháp tọa độ trong không gian - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập trắc nghiệm phương pháp tọa độ trong không gian. Tóm tắt lý thuyết và công thức cơ bản I. Vectơ pháp tuyến của mặt phẳng II. Phương trình mặt phẳng III. Khoảng cách từ một điểm đến một mặt phẳng IV. Vị trí tương đối của hai mặt phẳng VI. Góc giữa hai mặt phẳng Các dạng toán và bài tập trắc nghiệm Loại 1. Vectơ pháp tuyến của mặt phẳng Loại 2. Viết phương trình mặt phẳng (biết điểm và VTPT của mặt phẳng) Loại 3. Viết phương trình mặt phẳng (phương trình mặt phẳng theo đoạn chắn) [ads] Loại 4. Viết phương trình mặt phẳng (biết VTPT và một điều kiện) Loại 5. + Khoảng cách từ một điểm đến một mặt phẳng + Vị trí tương đối của hai mặt phẳng Loại 6. + Vị trí tương đối giữa mặt phẳng và mặt cầu. + Hình chiếu của một điểm lên mặt phẳng Loại 7. + Góc giữa hai mặt phẳng + Phương trình mặt phẳng (Biết hai điểm thuộc mặt phẳng và góc)