Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải Hệ phương trình đối xứng - Phạm Hùng Vương

Chuyên đề là kết quả thu được qua một thời gian học tập và nghiên cứu của bản thân về hệ phương trình. Tuy nhiên có thể nói rằng, đó là sự kết tinh qua nhiều thế hệ, là sự giúp đỡ, là sự học hỏi từ những người bạn của mình cũng như rất nhiều yếu tố khác. Để đạt hiệu quả cao khi tham khảo chuyên đề này, xin được trích dẫn mấy lời của nhà giáo G.Polya: “Một số bài toán có nêu lời giải đầy đủ (tuy vắn tắt), đối với một số bài khác, chỉ vạch ra mấy bước giải đầu tiên, và đôi khi chỉ đưa ra kết quả cuối cùng. Một số bài toán có kèm thêm chỉ dẫn để giúp người đọc giải được dễ dàng hơn. Chỉ dẫn cũng có thể nằm trong những bài toán khác ở gần bài toán đang xét. Nên đặc biệt lưu ý đến những nhận xét mở đầu trước từng bài tập hay cả một nhóm bài tập gặp thấy trong chương. Nếu chịu khó, gắng sức giải một bài toán nào đó thì dù không giải nổi đi chăng nữa, bạn đọc cũng thu hoạch được nhiều điều bổ ích. Chẳng hạn, bạn đọc có thể giở ra xem (ở cuốn sách) phần đầu mỗi lời giải, đem đối chiếu với những suy nghĩ của bản thân mình, rồi gấp sách lại và thử gắng tự lực tìm ra phần còn lại của lời giải. Có lẽ thời gian tốt nhất để suy nghĩ, nghiền ngẫm về phương pháp giải bài toán là lúc bạn vừa tự lực giải xong bài toán hay vừa đọc xong lời giải bài toán trong sách, hay đọc xong phần trình bày phương pháp giải trong sách. Khi vừa hoàn thành xong nhiệm vụ, và các ấn tượng hãy còn “nóng hổi”, nhìn lại những nổ lực vừa qua của mình, bạn đọc có thể phân tích sâu sắc tính chất của những khó khăn đã vượt qua. Bạn đọc đọc có thể tự đặt cho mình nhiều câu hỏi bổ ích: “Khâu nào trong quá trình giải là quan trọng nhất? Khó khăn chủ yếu là ở chỗ nào? Ta có thể làm gì cho tốt hơn? Chi tiết ấy mình cũng đã liếc qua mà không chú ý đến – muốn “nhìn thấy” chi tiết này thì đầu óc phải có tư chất ra sao? Liệu ở đây có một cách gì đó đáng lưu ý để sau này gặp một tình huống tương tự, ta có thể áp dụng được không?” Tất cả những câu hỏi đó đều hay cả, và cũng còn nhiều câu hỏi bổ ích khác nữa, nhưng câu hỏi hay nhất chính là câu hỏi tự nhiên nảy ra trong đầu, không cần ai gợi ý!” [ads] Do thời gian cũng như 1 số vấn đề khác như kiến thức, trình bày … mà chuyên đề này còn khá nhiều khiếm khuyết. Rất mong được các bạn quan tâm và chia sẻ đề hoàn thiện chuyên đề hơn. Hi vọng nó sẽ là tài liệu bổ ích giúp chúng ta vượt qua 1 chẳng nhỏ trong chặng đường chinh phục toán học.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình đại số - Lưu Huy Thưởng
Tài liệu gồm 24 trang phân dạng toán và tuyển chọn bài tập phương trình – hệ phương trình – bất phương trình, tài liệu do thầy Lưu Huy Thưởng biên soạn. Nội dung tài liệu : Chuyên đề phương trình và bất phương trình Bài 1. Đại cương về phương trình và bất phương trình 1. Dạng toán 1. Giải và biện luận phương trình và bất phương trình 2. Dạng toán 2. Dấu của nghiệm số phương trình bậc hai 3. Dạng toán 3. Áp dụng định lý viet Bài 2. Phương trình và bất phương trình chứa dấu giá trị tuyệt đối Bài 3. Phương trình và bất phương trình chứa dấu căn thức Chuyên đề hệ phương trình I. Các dạng hệ phương trình cơ bản II. Các phương pháp giải hệ phương trình 1. Phương pháp rút thế, phương pháp cộng 2. Tìm mối liên hệ giữa x, y từ 1 phương trình rồi thế vào phương trình còn lại 3. Đặt ẩn phụ chuyển về hệ cơ bản 4. Phương pháp hàm số
Chuyên đề phương trình, bất phương trình và hệ phương trình đại số
Tài liệu gồm 250 trang trình bày đầy đủ các dạng toán phương trình, bất phương trình và hệ phương trình với các bài toán được giải chi tiết. Nội dung tài liệu : Phần 1 – Phương trình & bất phương trình A – Phương trình – bất phương trình cơ bản 1/ Phương trình – bất phương trình căn thức cơ bản 2/ Phương trình – bất phương trình chứa dấu giá trị tuyệt đối 3/ Một số phương trình – bất phương trình cơ bản thường gặp khác B – Giải phương trình & bất phương trình bằng cách đưa về tích số hoặc tổng hai số không âm 1/ Sử dụng biến đổi đẳng thức cơ bản để đưa về phương trình tích 2/ biến đổi về tổng hai số không âm 3/ Sử dụng nhân liên hợp 4/ Đặt ẩn phụ không hoàn toàn C – Giải phương trình & bất phương trình bằng đặt ẩn số phụ 1/ Đặt một ẩn phụ 2/ Đặt hai ẩn phụ [ads] D – Giải phương trình & bất phương trình bằng bất đẳng thức và hình học 1/ Giải phương trình và bất phương trình bằng bất đẳng thức 2/ Giải phương trình và bất phương trình bằng cách ứng dụng của hình học E – Giải phương trình & bất phương trình bằng phương pháp lượng giác hóa F – Giải phương trình & bất phương trình bằng phương pháp sử dụng tính đơn điệu của hàm số G – Bài toán chứa tham số trong phương trình & bất phương trình Phần 2 – Hệ phương trình A – Hệ phương trình cơ bản B – Biến đổi một phương trình thành tích & kết hợp phương trình còn lại C – Giải hệ bằng cách đặt ẩn phụ đưa về hệ cơ bản D – Giải hệ bằng bất đẳng thức E – Giải hệ bằng lượng giác hóa & số phức hóa F – Giải hệ bằng tính đơn điệu của hàm số G – Bài toán chứa tham số trong hệ phương trình
Các dạng Bất phương trình vô tỉ và cách giải
Tài liệu gồm 17 trang trình bày các dạng bất phương trình vô tỉ và hướng dẫn phương pháp giải các bất phương trình vô tỉ đó.
Tuyển tập 30 bài toán bất phương trình vô tỉ - Nguyễn Minh Tiến
Tài liệu gồm 18 trang tuyển chọn 30 bài toán bất phương trình vô tỉ có lời giải chi tiết, tài liệu được biên soạn bởi tác giả Nguyễn Minh Tiến.