Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán bằng cách lập phương trình hệ phương trình

Nội dung Giải bài toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Hướng dẫn giải bài toán bằng cách lập phương trình - hệ phương trình Hướng dẫn giải bài toán bằng cách lập phương trình - hệ phương trình Tài liệu này bao gồm 76 trang, dành cho học sinh lớp 9 để tham khảo khi học chương trình. Nó cung cấp phương pháp giải bài toán bằng cách lập phương trình - hệ phương trình, giúp học sinh hiểu rõ hơn về cách làm và giải quyết bài toán một cách chính xác. Với nội dung chi tiết và dễ hiểu, tài liệu này sẽ giúp học sinh tự tin hơn khi giải các bài toán liên quan đến phương trình và hệ phương trình.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề liên hệ giữa phép nhân và phép khai phương
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép nhân và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với hai số a b 0 ta có: ab a b. Chú ý: Định lí trên còn có thể mở rộng cho tích của nhiều số không âm. 2. Quy tắc khai phương một tích. Với A B 0 0 ta có: AB A B. Mở rộng: Với 1 2 0 0 … 0 AA n ta có: 1 2 1 2 A A n n. 3. Quy tắc nhân các căn bậc hai. Với hai biểu thức A B 0 0 ta có: A B AB. Chú ý: Với A ≥ 0, ta có: 2 2 A A AA. B. Bài tập và các dạng toán. Dạng 1 : Tính giá trị biểu thức. Cách giải: Áp dụng công thức khai phương một tích. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng công thức khai phương của một tích. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. Dạng 4 : Chứng minh đẳng thức. Cách giải: Áp dụng bất đẳng thức Côsi cho các số không âm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề rút gọn biểu thức chứa căn thức bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề rút gọn biểu thức chứa căn thức bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. KIẾN THỨC CẦN NHỚ. Bước 1: Tìm điều kiện xác định của biểu thức. Bước 2: Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Bước 3: Quy đồng. Bước 4: Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Bước 5: Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Bước 6: Phân tích tử thành nhân tử. Bước 7: Rút gọn lần cuối. CÁC DẠNG TOÁN. Dạng 1 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Cách giải: Thực hiện theo hai bước: Bước 1: Để rút gọn biểu thức chứa căn bậc hai đã cho, ta sử dụng các phép biến đổi như đưa thừa số ra ngoài hoặc vào trong dấu căn, trục căn thức ở mẫu, quy đồng mẫu thức … một cách linh hoạt. Bước 2: Để tìm giá trị của biểu thức khi biết giá trị của biến ta rút gọn giá trị của biến (nếu cần) sau đó thay vào biểu thức đã được rút gọn ở trên và tính kết quả. Dạng 2 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Cách giải: Để tìm giá trị của biến khi biết giá trị của biẻu thức tá ử dụng kết quả biểu thức rút gọn và giá trị đã biết của biểu thức trong đề bài để tìm ra kết quả. Dạng 3 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Cách giải: Ta xét hai trường hợp sau: Trường hợp 1: Tìm giá trị nguyên của biến để biểu thức nhậ giá trị nguyên. Trường hợp 2: Tìm giá trị thực của biến để biểu thức nhận giá trị nguyên. Dạng 4 : Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Cách giải: Để so sánh một biểu thức M với một số a, ta xét hiệu M – a và xét dấu của hiệu này, từ đó đi đến kết quả của phép so sánh. Dạng 5 : Rút gọn biểu thức chứa căn bậc hai và tìm GTNN (hoặc GTLN) của biểu thức. Cách giải: Chú ý rằng: – Biểu thức P có giá trị lớn nhất là a, ký hiệu P max a nếu P a với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. – Biểu thức P có giá trị nhỏ nhất là b, ký hiệu, P b min nếu P b với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. BÀI TẬP TỔNG HỢP. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.
Tóm tắt lý thuyết và một số dạng toán đường tròn - Nguyễn Ngọc Dũng
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tóm tắt lý thuyết và tuyển tập một số dạng toán đường tròn, giúp học sinh lớp 9 học tốt chương trình Hình học 9 chương 2 (SGK Toán 9 tập 1). Mục lục : CHƯƠNG 2 Đường tròn 3. 1 Sự xác định đường tròn. Tính chất đối xứng của đường tròn 3. Dạng 1. Chứng minh nhiều điểm cùng thuộc một đường tròn 3. + Chứng minh các điểm đã cho cách đều một điểm. + Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền. 2 Đường kính và dây của đường tròn. Liên hệ giữa dây và khoảng cách từ tâm đến dây 5. Dạng 1. Chứng minh hai đoạn thẳng bằng nhau. Hai dây bằng nhau 5. + Trong một đường tròn, hai dây bằng nhau thì cách đều tâm và ngược lại. + Chứng minh hai tam giác bằng nhau. Dạng 2. Tính độ dài một đoạn thẳng – Độ dài một dây cung 6. + Xác định khoảng cách từ tâm đến dây. + Áp dụng định lý Py-ta-go cho tam giác vuông có cạnh huyền là bán kính của đường tròn. Dạng 3. So sánh hai dây cung – Hai đoạn thẳng 6. + Xác định khoảng cách từ tâm đến dây. + Trong hai dây cung của một đường tròn, dây nào lớn hơn thì gần tâm hơn và ngược lại. + Quan hệ giữa đường vuông góc và đường xiên: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường vuông góc là đường ngắn nhất. 3 Vị trí tương đối của đường thẳng và đường tròn. Tiếp tuyến của đường tròn 8. Dạng 1. Tính độ dài một đoạn tiếp tuyến 8. + Xác định tam giác vuông có đỉnh góc vuông là tiếp điểm. + Áp dụng hệ thức lượng trong tam giác vuông để tính. Dạng 2. Chứng minh một đường thẳng là tiếp tuyến của đường tròn 9. + A thuộc (O), A thuộc d và d vuông góc OA suy ra d là tiếp tuyến của (O). Dạng 3. Tính chất của hai tiếp tuyến cắt nhau 10. + MA và MB là hai tiếp tuyến của (O). Khi đó: MA = MB; MO là đường phân giác của AMB và AOB. 4 Vị trí tương đối của hai đường tròn 12.
Chuyên đề rút gọn biểu thức và các bài toán liên quan - Trần Đình Cư
Tài liệu gồm 32 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm kiến thức cần nắm, phân loại và phương pháp giải bài tập chuyên đề rút gọn biểu thức và các bài toán liên quan, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số và ôn thi tuyển sinh vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NẮM B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Rút gọn biểu thức không chứa biến. Dạng 2: Tìm điều kiện xác định của biểu thức. Dạng 3: Rút gọn biểu thức chứa biến. Dạng 4: Rút gọn biểu thức, biết biến thỏa mãn điều kiện cho trước. Dạng 5: Các bài toán tổng hợp bao gồm các câu hỏi phụ. Dạng 6: Bài tập chinh phục điểm 10.