Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên Đề Thứ Tự Trong Tập Hợp Các Số Tự Nhiên Toán 6 Có Lời Giải Chi Tiết

Nguồn: thuvienhoclieu.com

Xem

Tài liệu dạy thêm học thêm chuyên đề số đo góc
Nội dung Tài liệu dạy thêm học thêm chuyên đề số đo góc Bản PDF Tài liệu dạy thêm học thêm chuyên đề số đo góc là một sản phẩm giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm 14 trang, tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập về chuyên đề số đo góc.Phần I của tài liệu là phần tóm tắt lý thuyết. Trong phần này, tài liệu giới thiệu cách đọc tên và viết kí hiệu cho các góc. Đầu tiên, để đọc tên và viết kí hiệu góc, ta cần xác định đỉnh và hai cạnh của góc. Sau đó, ta sử dụng kí hiệu và đọc tên của góc. Lưu ý là một góc có thể được gọi bằng nhiều cách.Phần II của tài liệu chứa các dạng bài tập. Dạng bài tập đầu tiên là nhận biết góc. Để nhận biết góc, ta cần xác định đỉnh và hai cạnh của góc, sau đó kí hiệu góc và đọc tên. Lưu ý rằng một góc có thể có nhiều tên gọi.Dạng bài tập thứ hai là tính số góc tạo thành bởi n tia chung gốc. Để tính số góc này, ta có thể vẽ hình và đếm số góc được tạo thành, hoặc sử dụng công thức.Dạng bài tập tiếp theo là xác định các điểm nằm bên trong góc cho trước. Để xác định điểm M có nằm bên trong góc xOy hay không, ta vẽ tia OM và xét xem tia Om có nằm giữa hai tia Ox và Oy hay không. Dựa vào kết quả, ta kết luận xem điểm M có nằm bên trong góc hay không.Dạng bài tập tiếp theo là đo góc. Để đo góc, ta đặt thước đo góc sao cho tâm thước trùng với đỉnh của góc, sau đó xoay thước sao cho một cạnh của góc đi qua vạch số 0 của thước. Bằng cách quan sát, ta tìm được số đo góc bằng cách xác định cạnh còn lại của góc đi qua vạch nào của thước.Dạng bài tập thứ năm là vẽ góc theo điều kiện cho trước. Để vẽ góc xOy khi biết số đo bằng 0o, ta vẽ tia Ox, đặt thước đo góc sao cho tâm của thước trùng với điểm O, và đánh dấu một điểm trên vạch chia độ của thước tương ứng với số chỉ n độ. Kế tiếp, ta kẻ tia Oy đi qua điểm đã đánh dấu. Kết quả là ta có được góc xOy với số đo là n.Dạng bài tập thứ sáu là so sánh góc. Ta đo góc rồi so sánh các số đo góc với nhau.Dạng bài tập cuối cùng là tính góc giữa hai kim đồng hồ. Hai tia trung gốc tạo thành một góc gọi là "góc không", và số đo của góc không là 0o. Lúc một giờ, góc tạo bởi kim giờ và kim phút là 30o.Nội dung trên là một tổng quan về tài liệu dạy thêm học thêm chuyên đề số đo góc. Tài liệu này cung cấp lý thuyết tóm tắt và phương pháp giải bài tập theo từng dạng.
Tài liệu dạy thêm học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng
Nội dung Tài liệu dạy thêm học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng Bản PDF Tài liệu dạy thêm học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng bao gồm 21 trang. Tài liệu được tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề đoạn thẳng và trung điểm của đoạn thẳng. Tài liệu được thiết kế nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán lớp 6. Phần I của tài liệu là tóm tắt về lý thuyết, giải thích các khái niệm và quy tắc cần biết về đoạn thẳng và trung điểm của đoạn thẳng. Phần II của tài liệu là các dạng bài tập. Dạng bài tập số 1 giúp học sinh nhận biết đoạn thẳng và tính độ dài của đoạn thẳng. Dạng bài tập số 2 liên quan đến việc so sánh độ dài của hai đoạn thẳng. Dạng bài tập số 3 yêu cầu học sinh vẽ đoạn thẳng trên một tia Ox và tìm vị trí của một điểm trên tia đó. Dạng bài tập số 4 giải thích khái niệm trung điểm của đoạn thẳng và cách tính độ dài đoạn thẳng liên quan tới trung điểm. Dạng bài tập số 5 là các bài toán mô phỏng thực tế có liên quan đến đoạn thẳng và trung điểm của đoạn thẳng.Tài liệu này được cung cấp dưới dạng file Word, nhằm đáp ứng nhu cầu của quý thầy cô.
Tài liệu dạy thêm học thêm chuyên đề điểm nằm giữa hai điểm, tia
Nội dung Tài liệu dạy thêm học thêm chuyên đề điểm nằm giữa hai điểm, tia Bản PDF Tài liệu dạy thêm và học thêm chuyên đề điểm nằm giữa hai điểm, tia là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu bao gồm 14 trang với hai phần chính: Tóm tắt lí thuyết và Các dạng bài.Phần I: Tóm tắt lí thuyết cung cấp những kiến thức cần biết về chủ đề điểm nằm giữa hai điểm, tia. Nó giúp học sinh nắm vững lý thuyết và các khái niệm cơ bản về điểm nằm giữa, điểm khác phía và điểm cùng phía.Phần II: Các dạng bài liệt kê và hướng dẫn cách giải từng dạng bài một. Cụ thể, các dạng bài bao gồm:1. Nhận biết điểm thuộc đường thẳng và đường thẳng đi qua điểm: Đề cập đến việc xác định những điểm thuộc đường thẳng và những điểm mà đường thẳng đi qua.2. Vẽ điểm, vẽ đường thẳng theo một số điều kiện cho trước: Hướng dẫn vẽ đường thẳng và điểm theo các điều kiện đặt ra.3. Nhận biết ba điểm thẳng hàng: Giải thích cách kiểm tra xem ba điểm có thẳng hàng hay không bằng cách xem xét xem ba điểm đó có cùng thuộc một đường thẳng hay không.4. Đường thẳng đi qua hai điểm: Sử dụng tính chất "có một đường thẳng và chỉ một đường thẳng đi qua hai điểm" để giải quyết vấn đề.5. Chứng minh nhiều điểm thẳng hàng: Hướng dẫn cách chứng minh một số điểm nằm trong hai đường thẳng và các đường thẳng này có hai điểm chung.6. Vận dụng khái niệm điểm nằm giữa, điểm nằm khác phía, nằm cùng phía: Cung cấp ví dụ và giải thích cách áp dụng nhận xét "nếu điểm O nằm giữa hai điểm A và B, thì hai điểm A và B nằm khác phía với điểm O, hai điểm O và B nằm cùng phía với điểm A, hai điểm O và A nằm cùng phía với điểm B".7. Nhận biết điểm nằm giữa hai điểm khác: Sử dụng nhận xét rằng nếu hai tia OA, OB đối nhau thì điểm O nằm giữa hai điểm A và B.Tài liệu được biên soạn dưới dạng file Word, thuận tiện cho giáo viên và cô giáo. Nó giúp học sinh nắm vững kiến thức và cung cấp các bài tập để thực hành khả năng giải các dạng bài về điểm nằm giữa hai điểm, tia.
Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng
Nội dung Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng Bản PDF Tài liệu dạy thêm và học thêm về chuyên đề hình có tâm đối xứng là một tài liệu học được thiết kế để hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm tổng cộng 14 trang, trong đó có một phần tóm tắt lý thuyết và các phần hướng dẫn phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề hình có tâm đối xứng.Phần tóm tắt lý thuyết của tài liệu giải thích về khái niệm và cách kiểm tra xem một hình có tâm đối xứng hay không. Đầu tiên, để kiểm tra xem một hình có tâm đối xứng hay không, ta có thể lấy một điểm bất kỳ trên hoặc trong hình và lấy đối xứng qua tâm. Nếu điểm đó vẫn thuộc hình ban đầu, thì hình đó có tâm đối xứng. Ngược lại, nếu điểm đó không thuộc hình, thì hình không có tâm đối xứng.Phần tiếp theo của tài liệu trình bày về các dạng bài liên quan đến tâm đối xứng của hình. Đối với những hình có tâm đối xứng, số cạnh của hình (viền ngoài) sẽ là số chẵn. Ví dụ như hình bình hành, hình chữ nhật, hình vuông và hình thoi. Trong thiên nhiên, hình ảnh của bông hoa có tâm đối xứng nằm ở giữa, hình ảnh của cỏ bốn lá cũng có tâm đối xứng. Ngoài ra, tâm đối xứng của hình có số cạnh bằng nhau chính là giao điểm của các đường chéo.Tài liệu cũng giới thiệu về cách kiểm tra xem một chữ có tâm đối xứng hay không. Đầu tiên, ta cần đoán trước tâm đối xứng của chữ (thường là điểm nằm chính giữa chữ), sau đó lấy một điểm bất kỳ và kiểm tra. Nếu có một điểm khác đối xứng với điểm đã chọn mà vẫn thuộc chữ, thì chữ có tâm đối xứng.Một phần khác của tài liệu đề cập đến việc vẽ hình đối xứng qua một điểm. Để vẽ một điểm A' đối xứng với điểm A qua tâm O, ta dựng một đường tròn với tâm O và bán kính là OA. Đường tròn này cắt đường thẳng OA tại điểm A' khác A. Khi đó, điểm A' là điểm đối xứng của A qua O. Để vẽ hai hình đối xứng qua một điểm O, ta chọn một số điểm đặc biệt thuộc hình đó, lấy đối xứng qua O và nối các điểm đó lại để tạo thành hình mới đối xứng với hình ban đầu qua tâm O.Cuối cùng, tài liệu giới thiệu về cách tính độ dài, chu vi và diện tích của hình có tâm đối xứng. Khi tính toán độ dài đoạn thẳng có tâm đối xứng, ta chú ý rằng tâm đối xứng là điểm chính giữa hoặc trung điểm của đoạn thẳng đó. Nói cách khác, khi tâm đối xứng O là trung điểm của đoạn AB, ta có: OA = OB = AB/2. Tài liệu cũng liệt kê một số hình phẳng thường gặp có tâm đối xứng, như hình bình hành, hình vuông, hình chữ nhật, hình thoi và hình lục giác đều. Tâm đối xứng của các hình này tổn tại tại giao điểm của các đường chéo chính hoặc trung điểm của mỗi đường chéo.Để tính toán chu vi và diện tích của các hình có tâm đối xứng, ta có thể áp dụng công thức đã học trong chương IV của môn Toán. Sau khi đo đạc và tính toán độ dài các cạnh và đường chéo, ta có thể sử dụng công thức để tính toán chu vi và diện tích của các hình.Tài liệu này được định dạng file WORD để thuận tiện cho việc sử dụng bởi quý thầy cô giáo.