Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lần 3 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh

Ngày … tháng 04 năm 2021, trường THPT Quế Võ 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 lần thứ ba. Đề khảo sát chất lượng lần 3 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 3 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol,mỗi nhịp cách nhau 40m, biết 2 bên đầu cầu và giữa mối nhịp nối người ta xây 1 chân trụ rộng 5m. Bề dày và bề rộng của nhịp cầu không đổi là 20 cm (mặt cắt của một nhịp cầu được mô phỏng như hình vẽ). Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu (làm tròn đến hàng đơn vị). + Một điện thoại đang nạp pin, dung lượng pin nạp được tính theo công thức mũ như sau với t là khoảng thời gian tính bằng giờ và Q0 là dung lượng nạp tối đa. Hãy tính thời gian nạp pin của điện thoại tính từ lúc cạn hết pin cho đến khi điện thoại đạt được 90% dung lượng pin tối đa. + Gọi A là tập hợp các số tự nhiên có 4 chữ số khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số từ tập hợp A. Xác suất để số lấy được là số tự nhiên không lớn hơn 2503 là?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lớp 12 môn Toán lần 1 năm 2020 2021 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 12 môn Toán lần 1 năm 2020 2021 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 12 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 12 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì của hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để của hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Chọn khẳng định sai: A. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt. B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung. C. Mỗi mặt của khối đa diện có ít nhất ba cạnh. D. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện. + Cho tứ diện ABCD có AB = CD. Mặt phẳng (a) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là: A. Hình vuông B. Hình thoi C. Hình tam giác D. Hình chữ nhật. File WORD (dành cho quý thầy, cô):
Đề thi KSCL lần 3 lớp 12 môn Toán năm 2018 2019 trường Triệu Thái Vĩnh Phúc
Nội dung Đề thi KSCL lần 3 lớp 12 môn Toán năm 2018 2019 trường Triệu Thái Vĩnh Phúc Bản PDF Vừa qua, trường THPT Triệu Thái (Lập Thạch, Vĩnh Phúc) đã tổ chức kỳ thi khảo sát chất lượng lần 3 môn Toán lớp 12 năm học 2018 – 2019, kỳ thi nhằm tạo điều kiện để các em học sinh khối 12 của nhà trường được tiếp tục rèn luyện và củng cố các kiến thức Toán THPT, để các em có sự chuẩn bị tốt nhất cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi KSCL lần 3 Toán lớp 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc có mã đề 132 gồm 06 trang, đề được soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài tập, học sinh làm bài thi KSCL Toán lớp 12 trong thời gian 90 phút. [ads] Trích dẫn đề thi KSCL lần 3 Toán lớp 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc : + Mảnh vườn nhà ông An có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Ông dùng 2 đường Parabol có đỉnh là tâm đối xứng của elip cắt elip tại 4 điểm M, N, P, Q như hình vẽ sao cho tứ giác MNPQ là hình chữ nhật có MN = 4 để chia vườn. Phần tô đậm dùng để trồng hoa và phần còn lại để trồng rau. Biết chi phí trồng hoa là 600.000 đồng/m2 và trồng rau là 50.000 đồng/m2. Hỏi số tiền phải chi gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 4m. + Trong kỳ thi chọn học sinh giỏi tỉnh Vĩnh Phúc có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. + Một vật chuyển động theo quy luật s = -1/3.t^3 + 6.t^2 với t ( giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây, kể từ khi vật bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? File WORD (dành cho quý thầy, cô):
Đề thi KSCL lần 4 lớp 12 môn Toán năm 2018 2019 trường Yên Khánh A Ninh Bình
Nội dung Đề thi KSCL lần 4 lớp 12 môn Toán năm 2018 2019 trường Yên Khánh A Ninh Bình Bản PDF Sytu giới thiệu đến các em đề thi KSCL lần 4 Toán lớp 12 năm 2018 – 2019 trường Yên Khánh A – Ninh Bình, kỳ thi nhằm giúp học sinh khối 12 của nhà trường rèn luyện thường xuyên để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019 sắp diễn ra. Trích dẫn đề thi KSCL lần 4 Toán lớp 12 năm 2018 – 2019 trường Yên Khánh A – Ninh Bình : + Cho vật thể (T) giới hạn bởi hai mặt phẳng x = 0, x = 2. Cắt vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại x (0 ≤ x ≤ 2) ta thu được thiết diện là một hình vuông có cạnh bằng (x + 1)e^x. Thể tích vật thể (T) bằng? [ads] + Cho số phức z thỏa mãn: |z + 2 – i| = 3. Tập hợp các điểm trong mặt phẳng tọa độ (Oxy) biểu diễn số phức w = 1 + z‾ là: A. Đường tròn tâm I(-2;1), bán kính R = 3. B. Đường tròn tâm I(2;-1), bán kính R = 3. C. Đường tròn tâm I(-1;-1), bán kính R = 9. D. Đường tròn tâm I(-1;-1) bán kính R = 3. + Gọi X là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Tính xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1; 2; 3; 4; 5} và ba số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ. File WORD (dành cho quý thầy, cô):
Đề thi khảo sát lớp 12 môn Toán lần 3 năm 2018 2019 trường THPT chuyên Hưng Yên
Nội dung Đề thi khảo sát lớp 12 môn Toán lần 3 năm 2018 2019 trường THPT chuyên Hưng Yên Bản PDF Vừa qua, trường THPT chuyên Hưng Yên (Số 1 – đường Chu Văn An – phường An Tảo – TP Hưng Yên – tỉnh Hưng Yên) đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ 3 năm học 2018 – 2019, kỳ thi nhằm kiểm tra đánh giá thường xuyên kiến thức Toán THPT của học sinh khối 12 trong quá trình các em chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi khảo sát Toán lớp 12 lần 3 năm 2018 – 2019 trường THPT chuyên Hưng Yên có mã đề 134, đề gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án A, B, C, D, học sinh làm bài thi Toán trong thời gian 90 phút. [ads] Trích dẫn đề thi khảo sát Toán lớp 12 lần 3 năm 2018 – 2019 trường THPT chuyên Hưng Yên : + Để chuẩn bị cho hội trại do Đoàn trường THPT chuyên Hưng Yên tổ chức, lớp 12A dự định dựng một cái lều trại có dạng hình parabol như hình vẽ. Nền của lều trại là một hình chữ nhật có kích thước bề ngang 3 mét, chiều dài 6 mét, đỉnh trại cách nền 3 mét. Tính thể tích phần không gian bên trong lều trại. + Một tay đua đang điều khiển chiếc xe đua của mình với vận tốc 180 km/h. Tay đua nhấn ga để về đích kể từ đó xe chạy với gia tốc a(t) = 2t + 1 (m/s2). Hỏi rằng 4s sau khi tay đua nhấn ga thì xe đua chạy với vận tốc bao nhiêu km/h. + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 3)^2 = 25 và M(4;6;3). Qua M kẻ các tia Mx, My, Mz đôi một vuông góc với nhau và cắt mặt cầu tại các điểm thứ hai tương ứng là A, B, C. Biết mặt phẳng (ABC) luôn đi qua một điểm cố định H(a;b;c). Tính a + 3b – c. File WORD (dành cho quý thầy, cô):