Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Việt Trì - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm 03 trang, hình thức 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 150 phút, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Việt Trì – Phú Thọ : + Một công ty cổ phần cấp nước áp dụng định mức tiêu thụ nước mỗi người là 4m3/người/tháng và đơn giá được cho bởi bảng sau: Lượng nước tiêu thụ (m3) Giá cước (đồng/m3). Đến 4m3/người/tháng 5300. Trên 34m/người/tháng đến 36m/người/tháng 10200. Trên 36m/người/tháng 11400. Gia đình bạn An có 9 người. Trong tháng 7 năm 2017, gia đình bạn An phải trả tiền nước theo hóa đơn là 653430 đồng (hóa đơn này bao gồm thuế giá trị gia tăng (VAT) 5% và 10% phí bảo vệ môi trường). Lượng nước máy mà nhà bạn An đã sử dụng trong tháng 7 năm 2017 là? + Cho nửa đường tròn O R đường kính BC. Điểm A di động trên nửa đường tròn đã cho (A khác BC), vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB AC và nửa đường tròn O R lần lượt tại D E M. Đường thẳng AM cắt đường thẳng BC tại N. a) Chứng minh rằng AME ACN và 3 2 BC BD CE. b) Chứng minh rằng ba điểm D E N thẳng hàng. c) Xác định vị trí của điểm A trên nửa đường tròn đã cho để tam giác ABH có diện tích lớn nhất. + Trên Parabol 24 x P y lấy các điểm PQ có hoành độ lần lượt là 2 và 4. Biết M là điểm nằm trên trục Ox sao cho MP MQ nhỏ nhất. Tọa độ điểm M là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng : + Trong phòng họp của công ty có một số ghế dài. Nếu xếp mỗi ghế bốn người dự họp thì thiếu một ghế. Nếu xếp mỗi ghế năm người dự họp thì thừa một ghế. Hỏi phòng họp của công ty có bao nhiêu ghế và bao nhiêu người dự họp? + Cho tam giác ABC, gọi M là trung điểm cạnh BC. Trên tia đối của tia CA lấy điểm D (DC > AC). Gọi N là trung điểm đoạn AD, kẻ đường thẳng qua D song song MN, cắt AB tại E. Hai đường thẳng EC và BD cắt nhau tại O. Chứng minh rằng tam giác ODE và tứ giác ABOC có diện tích bằng nhau. + Cho hình vuông ABCD tâm O. Lấy điểm E trên đoạn AB (E khác B và A), gọi F là giao điểm của CE và DA, đường thẳng DE cắt đường tròn (O;OA) tại điểm K (K khác D). Qua K kẻ tiếp tuyến KH với đường tròn (O;AB/2) (H thuộc (O;OA) và nằm khác phía với D qua FC). a) Chứng minh rằng tứ giác KHDA là hình thang cân. b) Chứng minh rằng F, K, H thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Có 75 bóng đèn gồm 30 bóng xanh, 25 bóng đỏ, 20 bóng vàng. Mỗi lượt người ta đổi màu của hai bóng khác màu sang màu thứ ba (chẳng hạn đổi màu một bóng xanh và một bóng đỏ thành hai bóng vàng). Có thể xảy ra được toàn bộ 75 bóng đèn đều cùng một màu hay không? Vì sao? + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại các điểm M, N, P. Gọi Q là hình chiếu vuông góc của M xuống NP (Q thuộc NP). Kẻ BH, CT lần lượt vuông góc với đường thẳng PN (H và T thuộc PN) a) Chứng minh: Tam giác BPH đồng dạng tam giác CNT b) Chứng minh: QM là tia phân giác góc BQC c) Gọi G là điểm chính giữa cung BAC của đường tròn (O). GM cắt (O) tại E. Chứng minh: A, Q, E thẳng hàng. + Cho a, b, c là các số thực khác 0 thỏa mãn: a b c. Chứng minh a, b, c đôi một khác nhau thì a2b2c2 = 1.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu.
Đề thi chọn học sinh giỏi cấp tỉnh Toán THCS năm 2022 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán bậc THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (bảng A và bảng B); kỳ thi được diễn ra vào thứ Tư ngày 23 tháng 02 năm 2022.