Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 Toán 7 năm 2019 - 2020 trường THCS Văn Lang - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra học kì 2 môn Toán 7 năm học 2019 – 2020 trường THCS Văn Lang, quận 1, thành phố Hồ Chí Minh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra học kì 2 Toán 7 năm 2019 – 2020 trường THCS Văn Lang – TP HCM : + Nhiệt độ sôi của nước không phải lúc nào cũng là 100 0C mà phụ thuộc vào độ cao của nơi đó so với mực nước biển. Chẳng hạn Thành Phố Hồ chí Minh có độ cao xem như ngang mực nước biển (h = 0 m) thì nước có nhiệt độ sôi là TC = 100 0C nhưng ở thủ đô La Paz của Bolivia, Nam Mỹ có độ cao h = 3600 m so với mặt nước biển thì nhiệt độ sôi của nước là TC = 87 0C. Ở độ cao trong khoảng vài km, người ta thấy mối quan hệ giữa hai đại lượng này được xác định bởi công thức 100 3600 13 TC h trong đó TC là nhiệt độ sôi của nước tính theo độ C và h là độ cao của mực nước biển tính theo mét. Thành phố Đà Lạt có độ cao 1500 m so với mực nước biển. Hỏi nhiệt độ sôi của nước ở thành phố này là bao nhiêu ? + Cho hình vẽ. Hãy tính chiều dài cần cẩu AB. + Cho tam giác ABC cân tại A. Gọi D là trung điểm của cạnh AC. Trên tia đối của tia DB lấy điểm M sao cho DE = DB. a) Chứng minh rằng: ABD CDE. b) Đường thẳng qua D song song với BC cắt CE tại F. Chứng minh rằng: CDF cân. c) Trên tia đối của tia FA lấy điểm N sao cho FN = FA. Gọi G là giao điểm của AC và BF. Chứng minh GB + GA > 2 CF.

Nguồn: toanmath.com

Đọc Sách

Đề học kì 2 Toán 7 năm 2022 - 2023 trường THCS Vân Đồn - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra cuối học kì 2 môn Toán 7 năm học 2022 – 2023 trường THCS Vân Đồn, quận 4, thành phố Hồ Chí Minh. Trích dẫn Đề học kì 2 Toán 7 năm 2022 – 2023 trường THCS Vân Đồn – TP HCM : + Trên một mảnh đất rộng bằng phẳng, người ta dự định đặt một máy phát tín hiệu có bán kính phát sóng tối đa là 280m tại điểm C, còn lại ở các địa điểm A và B có bố trí các máy thu (Hình 2). Biết AB = 450m, AC = 150m. Hỏi máy thu tại điểm B có thể nhận được tín hiệu từ máy phát tín hiệu tại C không? Vì sao? + Hai lớp 7A và 7B quyên góp sách cho các bạn học sinh trong chương trình “Sách cũ lòng vàng” do Liên đội trường phát động. Biết số sách mỗi lớp quyên góp tỉ lệ thuận với số học sinh mỗi lớp và tổng số sách quên góp là 204 cuốn. Tìm số sách mỗi lớp đã quyên góp biết rằng số học sinh của lớp 7A và 7B lần lượt là 33 và 35 học sinh. + Khẳng định nào sau đây là khẳng định đúng? A. Trọng tâm của một tam giác cách đều ba cạnh của tam giác đó. B. Trực tâm của một tam giác cách đều ba đỉnh của tam giác đó. C. Giao điểm của hai đường trung trực của một tam giác cách đều ba đỉnh của tam giác đó. D. Giao điểm ba đường phân giác của một tam giác cách đều ba đỉnh của tam giác đó.
Đề học kì 2 Toán 7 năm 2022 - 2023 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cuối học kì 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi cấu trúc 40% trắc nghiệm + 60% tự luận, thời gian làm bài 90 phút; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Thái Hòa – Nghệ An : + An lấy ngẫu nhiên 3 viên bi trong một túi đựng 3 bi xanh và 2 bi đỏ. Đâu là biến cố chắc chắn? A.An lấy được toàn bi xanh. B.An lấy được bi xanh hoặc bi đỏ. C. An lấy được toàn bi đỏ. D.An lấy được bi có hai màu khác nhau. + Gieo một con xúc sắc cân đối một lần. Trong các biến cố sau, biến cố nào là chắc chắn? A. Gieo được mặt có số chấm bằng 3 B. Gieo được mặt có ít nhất 1 chấm C. Gieo được mặt có số chấm bằng 7 D. Gieo được mặt có số chấm bằng 2. + Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh BC lấy điểm H sao cho HB = BA, từ H kẻ HE vuông góc với BC tại H (E thuộc AC) a) Chứng minh: ABE HBE. b) Chứng minh: Tam giác AEH cân tại E. c) Chứng minh: BE là đường trung trực của AH. d) Gọi K là giao điểm của HE và BA. Chứng minh: BE vuông góc KC.
Đề học kì 2 Toán 7 năm 2022 - 2023 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cuối học kì 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Vũ Thư – Thái Bình : + Gieo một con xúc xắc được chế tạo cân đối. Tìm xác suất của biến cố “Mặt xuất hiện của con xúc xắc có số chấm là số lẻ”. + Thu gọn và sắp xếp các hạng tử của đa thức 5 4 35 3 P x 2x 4x x 3x 2x 5 theo lũy thừa giảm dần của biến. + Cho ∆ABC vuông tại A có AB AC. Kẻ đường phân giác BD của ABC (D AC). Kẻ DH vuông góc với BC tại H. a) Chứng minh ΔDAB = ΔDHB. b) Chứng minh AD < DC. c) Gọi K là giao điểm của đường thẳng DH và đường thẳng AB, đường thẳng BD cắt KC tại E. Chứng minh BE KC và ΔKDC cân tại D.
Đề học kì 2 Toán 7 Cánh Diều năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng cuối học kì 2 môn Toán 7 Cánh Diều (CD) năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi hình thức 20% trắc nghiệm kết hợp 80% tự luận, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 Cánh Diều năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm: Trong cuộc thi chạy cự li 100m của học sinh nam, có bốn học sinh Bình, Hùng, Hòa, Dũng tham gia với kết quả được thống kê như sau: Học sinh Bình Hùng Hòa Dũng. Thời gian (giây) 15 14,5 14 15,2. Bạn nào chạy nhanh nhất? A. Bình B. Hòa C. Hùng D. Dũng. + Một chiếc hộp có 20 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3,…, 19, 20. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. a) Viết tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. b) Xét biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 2 và 3 đều có số dư là 1”. Tính xác suất của biến cố đó. + Cho tam giác ABC vuông tại A (AB < AC), tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc với BC tại E. a) Chứng minh ∆ABD = ∆EBD. b) Gọi M là giao điểm của AB và DE. Chứng minh DM = DC và chứng minh BD là đường trung trực của MC.