Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 trường THPT chuyên Hà Tĩnh

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 trường THPT chuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 2022 trường THPT chuyên Hà Tĩnh Đề tuyển sinh môn Toán năm 2021 2022 trường THPT chuyên Hà Tĩnh Chào các thầy cô giáo và các em học sinh, Sytu xin giới thiệu đến quý vị Đề tuyển sinh lớp 10 môn Toán năm học 2021 - 2022 của trường THPT chuyên Hà Tĩnh. Kỳ thi sẽ diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Dưới đây là một số câu hỏi trong đề: Cho x, y là các số thực dương thỏa mãn x + y + xy = 3. Hãy tìm giá trị lớn nhất của biểu thức P. Trong nửa đường tròn có tâm O và đường kính AB, gọi I là điểm chính giữa của cung AB. Trên cung lớn AB của đường tròn tâm I, bán kính IA, lấy điểm C sao cho tam giác ABC nhọn. Gọi M, N lần lượt là giao điểm của CA, CB với nửa đường tròn đường kính AB (M khác A, N khác B); J là giao điểm của AN với BM. Hãy chứng minh: MBC và NAC là các tam giác cân. I là trực tâm của tam giác CMN. Tính tỉ số CJ/OK với K là trung điểm của IJ. Cho tập hợp X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, chia tập hợp X thành hai tập hợp khác rỗng và không có phần tử chung. Chứng minh rằng luôn tồn tại 3 số a, b, c trong một tập hợp thỏa mãn a + c = 2b. Hy vọng rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi gồm 04 câu trắc nghiệm (02 điểm) và 06 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho Parabol (P): y = x2 và đường thẳng d: y = -2x + m – 1 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) sao cho. + Một phân xưởng theo kế hoạch phải may 900 bộ quần áo trong một thời gian quy định, mỗi ngày phân xưởng may được số bộ quần áo là như nhau. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng may được bao nhiêu bộ quần áo? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB < AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn. b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O; R) và đỉnh A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kì thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – m + 3 (m là tham số) và parapol (P): y = x2. a) Vẽ đồ thị (P). b) Tìm các số nguyên m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn: x12(x2 + 2) + x22(x1 + 2) =< 10. + Nhằm đáp ứng nhu cầu sử dụng khẩu trang chống dịch COVID-19, theo kế hoạch, hai tổ sản xuất của một nhà máy dự định làm 720000 khẩu trang. Do áp dụng kĩ thuật mới nên tổ I đã sản xuất vượt kế hoạch 15% và tổ II vượt kế hoạch 12%, vì vậy họ đã làm được 819000 khẩu trang. Hỏi theo kế hoạch số khẩu trang của mỗi tổ sản xuất là bao nhiêu? + Cho nửa đường tròn tâm O bán kính 3cm có đường kính AB. Gọi C là điểm thuộc nửa đường tròn sao cho AC > BC. Vẽ OD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB). Tiếp tuyến tại B của nửa đường tròn cắt tia AC tại F. a) Chứng minh: ODCE là tứ giác nội tiếp. b) Chứng minh: OCD = CBF. c) Cho BAC = 30°. Tính diện tích phần tam giác ABF nằm bên ngoài đường tròn (O;3cm). d) Khi C di động trên nửa đường tròn (O;3cm). Tìm vị trí điểm C sao cho chu vi tam giác OCE lớn nhất.
Đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2mx + m – 2 = 0 (m là tham số). a) Tìm tất cả các giá trị m để phương trình có hai nghiệm phân biệt dương. b) Gọi x1 và x2 là các nghiệm của phương trình. Tìm m để biểu thức M đạt giá trị nhỏ nhất. + Chứng minh rằng: A = a7 – a chia hết cho 7 với mọi a thuộc Z. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm BC; BE và CF là các đường cao (E và F là chân các đường cao). Các tiếp tuyến với đường tròn (O) tại B và C cắt nhau tại S. Gọi N và P lần lượt là giao điểm của BS với EF và AS với (O) (P khác A) . Chứng minh rằng: a) MN vuông góc BF. b) AB.CP = AC.BP. c) CAM = BAP.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – (m + 3)x + 2m + 2 = 0 với m là tham số. Tìm giá trị của tham số m để: a) Phương trình có nghiệm x = 3. b) Phương trình có hai nghiệm phân biệt x1 và x2 sao cho x12 + x22 = 13. + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối mỗi vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng của mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn người đó thu được là 252 triệu đồng. + Cho tam giác ABC có ba góc đều nhọn. Các đường cao AK, BE và CF cắt nhau tại H. Gọi I là trung điểm của đoạn AH, N là trung điểm của đoạn BC. a) Chứng minh bốn điểm A, E, H, F nằm trên cùng một đường tròn. b) Chứng minh NE là tiếp tuyến của đường tròn đường kính AH. c) Chứng minh CI2 – IE2 = CK.CB.