Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh

Nội dung Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh Tài liệu này bao gồm 139 trang, được phát hành bởi Hội Đồng Bộ Môn Toán Thành Phố Hồ Chí Minh. Được biên soạn để ôn thi tuyển sinh vào lớp 10 THPT năm học 2024 - 2025 tại Sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, tập hợp các đề tham khảo môn Toán giúp giáo viên và học sinh lớp 9 hiểu rõ hình thức và cấu trúc đề thi. Đây là tài liệu hữu ích để giúp học sinh chuẩn bị tốt nhất cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2024 - 2025. Danh sách các đề tham khảo theo quận và huyện: Quận 1: Đề số 1, Đề số 2, Đề số 3 Quận 3: Đề số 1, Đề số 2, Đề số 3 Quận 4: Đề số 1, Đề số 2, Đề số 3 Quận 5: Đề số 1, Đề số 2, Đề số 3, Đề số 4 - Thực hành SG Và nhiều đề tham khảo khác theo từng quận, huyện khác nhau trong TP Hồ Chí Minh Đây là nguồn tư liệu quý giá không chỉ giúp học sinh thi tốt môn Toán mà còn giúp họ nắm vững cấu trúc đề thi và rèn luyện kỹ năng giải đề hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm học 2019 2020 sở GDĐT Hà Nội (chuyên Toán)
Ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020, kỳ thi dành cho các thí sinh dự thi vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán, thời gian học sinh làm bài là 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán) : + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). [ads] 1) Chứng minh MI^2 = MJ.MA. 2) Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. 3) Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Mỗi điểm trong một mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. 1) Chứng minh trong mặt phẳng đó tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. 2) Gọi tam giác có ba đỉnh được tô đi cùng một màu là tam giác đơn sắc. Chứng minh trong mặt phẳng đó tồn tại hai tam giác đơn sắc là hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019.
Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Hải Dương
Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đáp ứng đủ tiêu chí về học lực vào học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Hải Dương gồm 5 bài toán dạng tự luận, đề thi gồm 1 trang, học sinh có 120 phút để làm bài thi, đề thi có lời giải chi tiết. [ads] Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Hải Dương : + Cho hai đường thẳng (d1): y = 2x – 5 và (d2): y = 4x – m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. + Theo kế hoạch, một xưởng may phải may xong 360 bộ quần áo trong một thời gian quy định. Đến khi thực hiện, mỗi ngày xưởng đã may được nhiều hơn 4 bộ quần áo so với số bộ quần áo phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng phải may bao nhiêu bộ quần áo? + Cho phương trình: x^2 – (2m + 1)x – 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m. Tìm các giá trị của m sao cho |x1| – |x2| = 5 và x1 < x2.
Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 - 2020 sở GDĐT Hà Nam (Đề chung)
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo Hà Nam (Đề chung – Vòng 1), đề thi được dành cho toàn bộ các thí sinh tham dự kỳ thi, đề gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số). 1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B. 2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2×1 + x2 = 1. [ads] + Cho đường tròn (O;R) và điểm A sao cho OA = 3R. Qua A kẻ hai tiếp tuyến AB và AC của đường tròn (O), với B và C là hai tiếp điểm. Kẻ cát tuyến AMN của đường tròn (O) (M nằm giữa hai điểm A và N). Gọi H là giao điểm của OA và BC. 1. Chứng minh tứ giác ABOC nội tiếp. 2. Chứng minh AM.AN = AH.AO. 3. Chứng minh HB là đường phân giác của góc MHN. 4. Gọi I, K lần lượt là hình chiếu của M trên AB và AC. Tìm giá trị lớn nhất của MI.MK khi cát tuyến AMN quay quanh A.
Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT thành phố Hồ Chí Minh
Sáng thứ Hai ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP HCM) tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020. Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 2 trang với 8 bài toán dạng tự luận, thời gian học sinh làm bài 120 phút, đáp án và lời giải chi tiết đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh : + Quy tắc sau đây cho ta biết được ngày n, tháng t, năm 2019 là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức T = n + H, ở đây H được xác định bởi bảng sau. Sau đó, lấy T chia cho 7 ta được số dư r (0 < r < 6). Nếu r = 0 thì ngày đó là ngày thứ Bảy. Nếu r = 1 thì ngày đó là ngày Chủ Nhật. Nếu r = 2 thì ngày đó là ngày thứ Hai. Nếu r = 3 thì ngày đó là ngày thứ Ba. ………… Nếu r = 6 thì ngày đó là ngày thứ Sáu. Ví dụ: Ngày 31/12/2019 có n = 31; t = 12; H = 0 ⇒ T = 31 + 0 = 31; số 31 chia cho 7 có số dư là 3, nên ngày đó là thứ Ba. [ads] a) Em hãy sử dụng quy tắc trên để xác định các ngày 02/9/2019 và 20/11/2019 là thứ mấy? b) Bạn Hằng tổ chức sinh nhật của mình trong tháng 10/2019. Hỏi sinh nhật của bạn Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của 3 và là thứ Hai. + Tại bề mặt đại dương, áp suất nước bằng áp suất khí quyển và là 1 atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm 1 atm cho mỗi 10 mét sâu xuống. Biết rằng mối liên hệ giữa áp suất y (atm) và độ sâu 1 (m) dưới mặt nước là một hàm số bậc nhất có dạng y = ax + b. a) Xác định các hệ số a và b. b) Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là 2,85 atm? + Một nhóm gồm 31 bạn học sinh tổ chức một chuyến đi du lịch (chi phí chuyến đi được chia đều cho mỗi bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có 3 bạn bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm 18 000 đồng so với dự kiến ban đầu để bù lại cho 3 bạn không tham gia. Hỏi tổng chi phí chuyến đi là bao nhiêu?