Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng tính chất của đồ thị hàm số để tính diện tích hình phẳng

Tài liệu gồm 58 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC, nội dung các dạng toán xoay quanh bài toán ứng dụng tích phân để tính diện tích hình phẳng với giả thiết bài toán cho bởi đồ thị hàm liên quan. + Dạng toán 1. Sử dụng định nghĩa xác định công thức diện tích. + Dạng toán 2. Dựa vào các điểm đồ thị đi qua xác định hàm số đi đến công thức tính. + Dạng toán 3. Dựa vào tâm đối xứng, trục đối xứng của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 4. Dựa vào tiếp tuyến của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 5. Biến đổi đồ thị đưa về tính toán đơn giản. + Dạng toán 6. Tính diện tích dựa vào việc chia nhỏ hình. + Dạng toán 7. Toán thực tế với giả thiết có đồ thị hàm liên quan. Các bài toán trắc nghiệm được trích dẫn và phát triển dựa trên các bài toán trong đề thi THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải bài toán tích phân hàm ẩn - Nguyễn Hoàng Việt
Tích phân hàm ẩn là một dạng toán thuộc mức độ vận dụng – vận dụng cao, được xuất hiện khá nhiều sau khi Bộ Giáo dục và Đào tạo quyết định thay đổi hình thức thi THPT Quốc gia môn Toán từ dạng tự luận sang dạng trắc nghiệm, trong đó hàm số cần tính nguyên hàm – tích phân không được cho ở dạng tường minh mà được “ẩn” kèm theo một số điều kiện có sẵn, điều này giúp làm hạn chế khả năng can thiệp của máy tính cầm tay trong quá trình giải toán, đòi hỏi học sinh cần phải tư duy nhiều hơn. Dạng toán tích phân hàm ẩn cũng ít xuất hiện trong sách giáo khoa Giải tích 12 cơ bản và nâng cao, do đó nhiều học sinh sẽ cảm thấy bỡ ngỡ khi bắt gặp dạng toán này. Để giúp các em có thể nắm được một số phương pháp giải quyết bài toán tích phân hàm ẩn, giới thiệu đến các em tài liệu hướng dẫn giải bài toán tích phân hàm ẩn, tài liệu gồm 89 trang được biên soạn bởi thầy Nguyễn Hoàng Việt bao gồm 84 ví dụ minh họa và 75 bài tập tích phân hàm ẩn có lời giải chi tiết, các bài tập được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán. [ads] Mục lục tài liệu hướng dẫn giải bài toán tích phân hàm ẩn – Nguyễn Hoàng Việt: Dạng 1 . Áp dụng định nghĩa, tính chất nguyên hàm. Dạng 2 . Áp dụng định nghĩa, tính chất, giải hệ tích phân. Dạng 3 . Tích phân hàm ẩn – phương pháp đổi biến. Tích phân hàm ẩn đổi biến dạng 1: Ta gặp ở bài toán đơn giản loại 1. Tích phân hàm ẩn đổi biến dạng 2: Bài tập thường cho ở dạng 2. Một số chú ý đặc sắc với tích phân hàm ẩn đổi biến: + Chú ý 1. Với những hàm số có tính chẵn lẻ ta cần nhớ. + Chú ý 2. Cách đổi biến ngược đối với hàm số luôn đồng biến hoặc luôn nghịch biến. + Chú ý 3. Bài toán tích phân có dạng sau. + Chú ý 4. Một số bài toán không theo khuôn mẫu sẵn thì yêu cầu học sinh phải có tư duy, có kĩ năng biến đổi để đưa về dạng quen thuộc. Dạng 4 . Phương pháp từng phần.
Tuyển tập chuyên đề tích phân và số phức vận dụng cao
Kỳ thi THPT Quốc gia từ năm 2016 – 2017, bài thi môn Toán chuyển từ thi tự luận sang hình thức thi trắc nghiệm nên trong cách dạy, cách kiểm tra đánh giá, cách ra đề cũng thay đổi. Sự thay đổi đó nằm trong toàn bộ chương trình môn Toán nói chung và trong phần tích phân nói riêng. Trong phần tích phân nếu cho bài như phần tự luận thì học sinh có thể dùng máy tính cầm tay để cho kết quả dễ dàng. Do đó việc ra đề theo hình thức trắc nghiệm và hạn chế việc dùng máy tính cầm tay được ưu tiên trong toán THPT. Trong đề thi THPT Quốc gia môn Toán năm 2017, ta thấy xuất hiện một bài toán lạ về tích phân. Nó cũng rất thú vị khi giúp ta đi sâu tìm thêm về ứng dụng của tích phân. Trong tài liệu này xin giới thiệu với các bạn các bài toán liên quan đến so sánh các giá trị của hàm số y = f(x) khi biết đồ thị của hàm số y = f'(x). Phương pháp chung cho các bài toán như thế này, một cách tự nhiên ta thầy rằng để so sánh được các giá trị của hàm số thì sử dụng bảng biến thiên là đơn giản nhất, vì khi đó ta nhìn thấy được hàm số đồng biến hay nghịch biến. Ngoài ra ta kết hợp thêm phần diện tích của hình phẳng được giới hạn bởi các đường liên quan. Với mục đích giúp các em học sinh trung học phổ thông nói chung, các bạn học sinh đam mê Toán nói riêng có thêm tài liệu để tham khảo và chuẩn bị đầy đủ kiến thức cho kỳ thi THPT Quốc gia, nhóm giáo viên Toán học Bắc Trung Nam sưu tầm và biên soạn cuốn sách chuyên đề tích phân và số phức vận dụng cao, tài liệu này gồm 10 chuyên đề: [ads] Chuyên đề 1. Các bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước. Chuyên đề 2. Các bài toán ước lượng giá trị của một hàm số khi cho trước các tích phân liên quan. Chuyên đề 3. Ứng dụng tích phân trong giải các bài toán liên quan đến so sánh giá trị của hàm số. Chuyên đề 4. Ứng dụng tích phân trong bài toán tính diện tích hình phẳng với dữ kiện toán thực tế. Chuyên đề 5. Ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế. Chuyên đề 6. Ứng dụng nguyên hàm, tích phân trong các bài toán thực tiễn khác. Chuyên đề 7. Bất đẳng thức tích phân và một số bài toán liên quan. Chuyên đề 8. Sử dụng phương pháp hình học giải bài toán số phức. Chuyên đề 9. Phương pháp đại số, lượng giác trong giải bài toán max – min số phức. Chuyên đề 10. Các bài toán số phức khác ở mức độ vận dụng cao.
Nguyên hàm, tích phân và ứng dụng (dành cho học sinh Yếu - TB) - Đặng Việt Đông
giới thiệu đến thầy, cô và các em học sinh lớp 12 tài liệu chuyên đề nguyên hàm, tích phân và ứng dụng hướng đến đối tượng học sinh có học lực Yếu – Trung bình, tài liệu gồm 192 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài tập trắc nghiệm ở mức độ dễ và vừa, nhằm giúp các em củng cố lại các kiến thức nguyên hàm, tích phân và ứng dụng được học ở lớp. Nội dung tài liệu được chia thành hai phần, phần đầu gồm 62 trang chỉ bao gồm phần bài tập, phần thứ hai gồm 130 trang bổ sung thêm đáp án và lời giải chi tiết ở ngay cuối mỗi bài tập, giúp các em thuận tiện tra cứu ngay kết quả bài toán. Hy vọng thông qua tài liệu này, các em học sinh có học lực đang ở mức độ yếu – trung bình có thể hiểu và nắm được phương pháp giải các bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng, để cải thiện và nâng cao học lực bản thân. [ads] Xem thêm : + Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông (phù hợp với đối tượng học sinh Khá – Giỏi). + Chuyên đề nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông (phù hợp với mọi đối tượng học sinh).
Nguyên hàm - tích phân và ứng dụng - Dương Phước Sang
giới thiệu đến thầy, cô và các em tài liệu nguyên hàm – tích phân và ứng dụng, tài liệu gồm 58 trang được biên soạn bởi thầy Dương Phước Sang tổng hợp lý thuyết và tuyển chọn một số bài tập trắc nghiệm – tự luận chủ đề nguyên hàm – tích phân và ứng dụng giúp học sinh học tập chương trình Giải tích 12 chương 3 và xa hơn là ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán. I. TÓM TẮT LÝ THUYẾT 1. Công thức định nghĩa của nguyên hàm, tích phân. 2. Tích chất của nguyên hàm. 3. Tích chất của tích phân. 4. Bảng nguyên hàm của các hàm số thông dụng. 5. Công thức nguyên hàm từng phần, tích phân từng phần. 6. Phương pháp đổi biến số trong bài toán nguyên hàm, tích phân. 7. Phép lượng giác hoá trong phương pháp tính tích phân (đổi biến số loại 1). 8. Một số dạng tích phân đặc biệt (hàm chẵn, hàm lẻ, hàm tuần hoàn …). 9. Ứng dụng tích phân giải bài toán về tốc độ thay đổi của một đại lượng. + Bài toán chuyển động. + Bài toán sinh học. [ads] 10. Ứng dụng tích phân tính diện tích hình phẳng. + Một số lưu ý về cách xử lý dấu giá trị tuyệt đối trong dấu tích phân khi tính diện tích hình phẳng. 11. Ứng dụng tích phân tính thể tích của một vật thể. + Công thức tính thể tích của một vật thể dựa vào diện tích mặt cắt. + Các công thức tính thể tích của vật thể tròn xoay (khi quay hình (H) quanh Ox). II. CÁC VÍ DỤ GIẢI TOÁN ĐIỂN HÌNH III. BÀI TẬP + Một số câu hỏi điền khuyết. + Luyện tập về nguyên hàm. + Câu hỏi trắc nghiệm khách quan nguyên hàm. + Luyện tập về tích phân. + Câu hỏi trắc nghiệm khách quan tích phân. + Luyện tập về ứng dụng của tích phân. + Câu hỏi trắc nghiệm khách quan ứng dụng của tích phân. + Trích dẫn câu trắc nghiệm trong các đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo.