Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Sytu xin gửi đến quý thầy cô và các bạn học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ được tổ chức vào ngày 07 tháng 09 năm 2022. Dưới đây là một số câu hỏi mẫu trong đề khảo sát: 1. Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). 2. Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. 3. Xác định vị trí của điểm C trên nửa đường tròn để độ dài đoạn thẳng JK là lớn nhất. Đây là những câu hỏi đòi hỏi sự tư duy logic, các khái niệm Toán học cơ bản và khả năng giải quyết vấn đề. Chúc các em học sinh có sự chuẩn bị tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi Toán cấp quận năm 2022 2023 phòng GD ĐT Đống Đa Hà Nội
Nội dung Đề học sinh giỏi Toán cấp quận năm 2022 2023 phòng GD ĐT Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội Sytu xin chào đến quý thầy cô và các em học sinh lớp 9 với đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND quận Đống Đa, Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn một số câu hỏi trong Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội: Câu 1: Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. Câu 2: Tìm số tự nhiên n sao cho 2n - 1 chia hết cho 7. Câu 3: Trên bảng viết 100 phân số. Thực hiện trò chơi: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, và viết thêm số (a - b + ab). Chứng minh rằng sau một số bước thực hiện, trên bảng còn lại đúng một số tự nhiên. Hy vọng các em sẽ cố gắng và tự tin để giải quyết các câu hỏi thú vị này. Chúc quý thầy cô và các em có một kỳ thi thành công!
Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế
Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022-2023 trường THCS Nguyễn Tri Phương TT Huế Đề HSG Toán lớp 9 vòng 1 năm 2022-2023 trường THCS Nguyễn Tri Phương TT Huế Xin chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến bạn đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2022-2023 của trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn một số câu hỏi trong đề thi: Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m^3 = 2p^3, n^3 = 5q^3. Chứng minh rằng tổng m + n + p + q là một hợp số. Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A'B'C' có đường phân giác A'D. Chứng minh rằng ABC đồng dạng A'B'C'. Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD. Đề thi năm nay đa dạng và mang tính chất bổ trợ kiến thức học tập của các em học sinh. Chúc các em ôn thi tốt và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội (vòng 1)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội (vòng 1) Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Lớp 9 Môn Toán Năm 2022-2023 Phòng GD ĐT Hoàn Kiếm Hà Nội (Vòng 1) Đề Học Sinh Giỏi Lớp 9 Môn Toán Năm 2022-2023 Phòng GD ĐT Hoàn Kiếm Hà Nội (Vòng 1) Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, Hà Nội (vòng 1). Đề thi sẽ diễn ra vào ngày 06 tháng 10 năm 2022. Trích dẫn từ Đề Học Sinh Giỏi Toán lớp 9 năm 2022-2023 của phòng GD&ĐT Hoàn Kiếm, Hà Nội (vòng 1): - Cho hình vuông ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OD. Trên tia đối của tia EC lấy điểm F sao cho OF = OC. Đường thẳng đi qua F và vuông góc với FO, cắt BD tại S. Kẻ FH vuông góc với BD tại H. 1) Chứng minh BFD = 90° và SD.SB= SH.SO. 2) Chứng minh FC là tia phân giác của góc BFD. 3) Kẻ ET vuông góc với BF tại T. Chứng minh: ST vuông góc với CF. - Tìm các số nguyên tố a, b sao cho a2 + 3ab + b2 là một số chính phương. - Cho 2022 điểm trên mặt phẳng, sao cho khi chọn ba điểm bất kỳ, ta được ba đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng tất cả các điểm này không thể nằm ngoài một tam giác có diện tích nhỏ hơn 4.