Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Hoàng Văn Thụ - Hoà Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình (đề thi dành cho thí sinh thi vào các lớp chuyên Toán); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Hoàng Văn Thụ – Hoà Bình : + Một cửa hàng điện máy thực hiện chương trình khuyến mãi giảm giá tất cả các mặt hàng 10% theo giá niêm yết và nếu hóa đơn khách hàng trên 10 triệu sẽ được giảm thêm 2% số tiền trên hóa đơn, hóa đơn trên 15 triệu sẽ được giảm thêm 4% số tiền trên hóa đơn, hóa đơn trên 40 triệu sẽ được giảm thêm 8% số tiền trên hóa đơn. Ông An muốn mua một ti vi với giá niêm yết là 9 200 000 đồng và một tủ lạnh với giá niêm yết là 7 100 000 đồng. Hỏi với chương trình khuyến mãi của cửa hàng, ông An phải trả bao nhiêu tiền? + Cho tam giác ABC vuông tại B (BC AB) nội tiếp trong đường tròn tâm O đường kính AC R 2. Kẻ dây cung BD vuông góc với AC, H là giao điểm của AC và BD. Trên HC lấy điểm E sao cho E đối xứng với A qua H. Đường tròn tâm O’ đường kính EC cắt đoạn BC tại I (I khác C). 1) Chứng minh rằng: CI CA CE CB. 2) Chứng minh rằng: Ba điểm D, I, E thẳng hàng. 3) Chứng minh rằng: HI là tiếp tuyến của đường tròn đường kính EC. 4) Khi B thay đổi thì H thay đổi, xác định vị trí của H trên AC để diện tích tam giác O’IH lớn nhất. + Cho phương trình: 2 x mx m 2 2 1 0 (m là tham số). Tìm m để phương trình có hai nghiệm dương.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Thanh Oai – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai tổ sản xuất khẩu trang trong một ngày làm được 5000 chiếc. Để đáp ứng nhu cầu khẩu trang trong phòng chống dịch cúm, mỗi ngày tổ I sản xuất vượt mức 20%, tổ II vượt mức 30%, do đó cả hai tổ mỗi ngày sản xuất được 6300 chiếc khâu trang. Hỏi ban đầu trong một ngày mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang? 2. Một bể bơi có chiều dài 50m, chiều rộng 25 m và chiều cao 2,3m. Người ta bơm nước vào bể sao cho cách mép bể là 0,5m. Tính thể tích nước trong bể. + Cho nửa đường tròn (O) đường kính AB = 2R. Qua điểm M thuộc nửa đường tròn, kẻ tiếp tuyến với đường tròn và gọi I, K theo thứ tự là chân các đường vuông góc kẻ từ A, B đến tiếp tuyến ấy. a. So sánh các độ dài MI và MK. b. Chứng minh rằng AB = AI + BK. c. Chứng minh AM là tia phân giác của góc OAI và AB là tiếp tuyến của đường tròn đường kính IK. d. Tính diện tích lớn nhất của tứ giác ABKI.
Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai lớp 9A và 9B có tổng cộng 95 học sinh. Trong đợt quyên góp vở ủng hộ các bạn học sinh nghèo, bình quân mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 4 quyển. Vì vậy cả hai lớp đã ủng hộ được 330 quyển. Tính số học sinh của mỗi lớp. + Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 31° và bóng của một cây trên mặt đất dài 20 m (xem hình vẽ bên). Tính chiều cao của cây (làm tròn kết quả đến mét). + Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên cung nhỏ BC lấy điểm D sao cho CD BD tia AD cắt đường tròn (O) tại điểm thứ hai là E. Gọi I là trung điểm của DE và K là giao điểm của BC và DE. 1) Chứng minh ABOI là tứ giác nội tiếp. 2) Chứng minh OIB OAC và AK AI AD AE. 3) Qua D kẻ đường thẳng song song với AB, đường thẳng này cắt BC tại điểm M. Đường thẳng ME lần lượt cắt đường tròn (O) và đường thẳng AB tại các điểm P và N (P khác E). Chứng minh rằng APN ICB.
Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 trường THPT Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THPT Sơn Tây, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 trường THPT Sơn Tây – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chu vi 90 m. Nếu giảm chiều dài đi 4 m và tăng chiều rộng lên 5 m thì diện tích mảnh đất tăng lên 70 m2. Tính diện tích mảnh đất hình chữ nhật ban đầu. + Khi mặt trời chiếu qua đỉnh ngọn cây thì góc tạo bởi tia nắng mặt trời với mặt đất là 52° và bóng cây trên mặt đất dài 7m. Tính chiều cao của cây (kết quả lấy đến hai chữ số của phần thập phân). + Cho tam giác ABC (AB > AC) nội tiếp đường tròn tâm O. Gọi M là trung điểm của đoạn thẳng BC; E, F lần lượt là chân đường vuông góc kẻ từ M đến các đường thẳng AB, AC. 1) Chứng minh tứ giác AEMF là tứ giác nội tiếp. 2) Đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K. Chứng minh KBC = MEF và BC.ME = EF.BK. 3) Đường thẳng AO cắt cạnh BC tại D. Gọi J là trung điểm của đoạn thẳng EF. Chứng minh AD // JM.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 trường THPT Chu Văn An - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 trường THPT Chu Văn An, tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 trường THPT Chu Văn An – Thái Nguyên : + Trong ngày thứ nhất, hai tổ sản xuất của một xí nghiệp dệt được 800 2 m vải. Ngày thứ hai do cải tiến kĩ thuật nên tổ I đã dệt vượt mức 20% so với ngày thứ nhất; tổ II đã dệt vượt mức 15% so với ngày thứ nhất nên ngày thứ hai cả hai tổ dệt được 945 2 m vải. Hỏi ngày thứ nhất mỗi tổ dệt được bao nhiêu mét vuông vải? + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB 6cm và AH 4,8cm. Tính độ dài cạnh BC và diện tích tam giác ABC. + Cho ABC nhọn có AB AC và nội tiếp đường tròn O. Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC và E là hình chiếu vuông góc của điểm B lên đường thẳng AO. a. Chứng minh bốn điểm A E H B cùng thuộc một đường tròn. b. Gọi M là trung điểm của cạnh BC. Tính tỉ số ME MH.