Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường Hòa Bình TP HCM

Nội dung Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường Hòa Bình TP HCM Bản PDF Ngày … tháng 05 năm 2019, trường TiH – THCS và THPT Hòa Bình, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kỳ 2 Toán lớp 12 năm 2018 – 2019. Đề kiểm tra học kỳ 2 Toán lớp 12 năm 2018 – 2019 trường Hòa Bình – TP HCM mã đề 149 được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, trong đó phần trắc nghiệm gồm 30 câu, chiếm 6,0 điểm, phần tự luận gồm 03 câu, chiếm 4,0 điểm, thời gian làm bài thi là 90 phút. Trích dẫn đề kiểm tra học kỳ 2 Toán lớp 12 năm 2018 – 2019 trường Hòa Bình – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α) cắt mặt cầu (S) tâm I(1;-3;3) theo giao tuyến là đường tròn tâm H(2;0;1), bán kính r = 2. Viết phương trình mặt cầu (S). + Trong không gian Oxyz, cho A(–1; –2; 2), B(–2; 0; 1) và mặt phẳng (P): 3x + y + 2z – 1 = 0. a) Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với (P). b) Viết phương trình mặt cầu tâm I(1; –3; –2 ) và tiếp xúc với mặt phẳng (P). + Một viên đạn được bắn lên theo phương thẳng đứng (từ mặt đất) với vận tốc ban đầu 98 (m/s), gia tốc trọng trường là 9,8 (m/s2). Tính quảng đường viên đạn đi được từ lúc bắn lên cho đến khi chạm đất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bà Điểm TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bà Điểm TP HCM Bản PDF Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1;3;-1) và mặt phẳng. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 3. Viết phương trình của mặt cầu (S). + Cho hai hàm số liên tục trên đoạn. Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số đó và các đường thẳng được tính theo công thức. + Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(1;4;3) và cắt trục Oy tại hai điểm M, N sao cho tam giác IMN vuông. Phương trình mặt cầu (S) là?
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT An Nghĩa TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT An Nghĩa TP HCM Bản PDF Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;2), B(5;4;4) và mặt phẳng (P). Nếu M thay đổi thuộc (P) thì giá trị nhỏ nhất của MA2 + MB2 là? + Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn là đường tròn có tâm I và bán kính R lần lượt là? + Cho hình phẳng giới hạn bởi các đường y = x − 1, y = 0, x = 4 quay xung quanh trục Ox. Thể tích khối tròn xoay tạo thành là?
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường Quốc tế Á Châu TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường Quốc tế Á Châu TP HCM Bản PDF Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường Quốc tế Á Châu, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường Quốc tế Á Châu – TP HCM : + Tìm phần thực và phần ảo của số phức z. A. Phần thực bằng 2019, phần ảo bằng 2020. B. Phần thực bằng −2019, phần ảo bằng −2020i. C. Phần thực bằng 2019, phần ảo bằng 2020i. D. Phần thực bằng −2019, phần ảo bằng −2020. + Trong không gian Oxyz, cho vật thể được giới hạn bởi hai mặt phẳng (P), (Q) vuông góc với trục Ox lần lượt tại x = a, x = b. Một mặt phẳng tùy ý vuông góc với Ox tại điểm có hoành độ x cắt vật thể theo thiết diện có diện tích là S(x) với y = S(x) là hàm số liên tục trên [a;b]. Thể tích V của thể tích đó được tính theo công thức? + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và mặt cầu (S). Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Đường tròn giao tuyến này có bán kính r bằng?
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Đông Dương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Đông Dương TP HCM Bản PDF Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Đông Dương, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Đông Dương – TP HCM : + Một em học sinh 15 tuổi được hưởng số tiền thừa kế là 300 000 000 đồng. Số tiền này được gửi tại một ngân hàng với kỳ hạn thanh Toán lớp 1 năm và học sinh này chỉ nhận được số tiền (cả gốc và lãi) khi đủ 18 tuổi. Biết rằng khi đủ 18 tuổi em này nhận được số tiền là 368 544 273 đồng. Vậy lãi suất của ngân hàng gần nhất với số nào sau đây? (Với giả thiết lãi suất không đổi trong suốt quá trình gửi). + Khi cắt một hình trụ bởi hai mặt phẳng cùng song song với trục. Với mặt phẳng thứ nhất cách trục một khoảng bằng a, thiết diện thu được là một hình vuông. Còn mặt phẳng thứ hai cách trục một khoảng bằng a thiết diện thu được là một hình chữ nhật có diện tích bằng. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng? + Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho. Mặt phẳng (MNP) chia khối tứ diện ABCD thành hai phần có thể tích là V1, V2 (tham khảo hình vẽ). Tỉ số V1/V2 bằng?