Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian

Cuốn sách Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian của các tác giả Lương Đức Trọng, Đặng Đình Hanh, Phạm Hoàng Hà gồm 360 trang với các chuyên đề bám sát các bài học trong SGK và một số chuyên đề mở rộng, nâng cao đáp ứng cho các bài tập có tính chất phân loại cao trong đề thi. Cấu trúc của mỗi chuyên đề gồm: tóm tắt nội dung kiến thức cơ bản, các dạng bài tập cơ bản, các ví dụ ở dạng bài tập trắc nghiệm khách quan được phân hóa theo 4 mức độ: nhận biết, thông hiểu, vận dụng và vận dụng cao; trong đó các bài tập cơ bản chiếm khoảng 70% và các bài tập nâng cao chiếm 30%. Ở mỗi ví dụ, ngoài việc trình bày lời giải để học sinh nắm vững kiến thức cơ bản, trong nhiều ví dụ có trình bày những nhận xét đặc thù để giúp học sinh có thể nhanh chóng loại bỏ một hoặc hai đáp án gây nhiễu. Đặc biệt, sau nhiều ví dụ có phần thủ thuật chọn nhanh để giúp học sinh nhanh chóng tìm được đáp án chính xác. Trong chuyên đề cuối cùng, ngoài các bài tập tổng hợp của hình giải tích không gian còn có phần ứng dụng của hình giải tích không gian vào giải một số bài tập hình không gian. Cuối mỗi chuyên đề có bài tập để học sinh tự rèn luyện. Kết thúc mỗi chuyên đề là phần Đáp án – Hướng dẫn giải, phần này bao gồm đáp án của tất cả các câu hỏi, bài tập và hướng dẫn giải những câu hỏi, bài tập điển hình hoặc những bài tập khó để học sinh có thể đối chiếu, qua đó giúp học sinh tích lũy kinh nghiệm, hình thành phương pháp giải các bài tập. [ads] Sách gồm các chủ đề : 1. Tọa độ trong không gian 2. Tích có hướng của hai vectơ và một số ứng dụng 3. Phương trình mặt phẳng 4. Phương trình đường thẳng 5. Vị trí tương đối của đường thẳng, mặt phẳng 6. Bài toán về hình chiếu vuông góc trong không gian 7. Góc và khoảng cách 8. Phương trình mặt cầu 9. Điểm, đường thẳng, mặt phẳng và mặt cầu 10. Ôn tập, các bài toán tổng hợp 11. Một số đề tổng hợp

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tọa độ của điểm và véctơ
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tọa độ của điểm và véctơ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. Hệ trục tọa độ trong không gian. II. Tọa độ vectơ. III. Tọa độ của điểm. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn cảnh hình học giải tích không gian trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 27 trang, tuyển chọn 274 câu hỏi và bài tập trắc nghiệm chuyên đề hình học giải tích trong không gian có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 1219 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu phương pháp tọa độ trong không gian trong các đề thi thử THPTQG môn Toán: + Trong không gian với hệ trục Oxyz, cho mặt cầu (S): (x + 2)2 + (y − 4)2 + (z − 1)2 = 99 và điểm M(1; 7; −8). Qua điểm M kẻ các tia Ma, Mb, Mc đôi một vuông góc nhau và cắt mặt cầu tại điểm thứ hai tương ứng là A, B, C. Biết rằng mặt phẳng (ABC) luôn đi qua một điểm cố định K(xk; yk; zk). Tính giá trị P = xk + 2yk − zk. + Trong không gian Oxyz, cho mặt cầu (S) : (x − 2)2 + (y − 4)2 + (z − 6)2 = 24 và điểm A(−2; 0; −2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω), kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω0). Biết rằng khi (ω) và (ω0) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2) và B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x2 + y2 + z2 − 4x + 2my − 2(m + 1)z + m2 + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1. + Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(1; 2; 1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (α). + Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y − 2z + 2018 = 0, (Q): x + my + (m − 1)z + 2017 = 0 (m là tham số thực). Khi hai mặt phẳng (P) và (Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q)?