Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Quảng Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn (O). Dựng đường kính NP của đường tròn (O) vuông góc với BC tại M (P nằm trên cung nhỏ BC). Tia phân giác của ABC cắt AP tại I. a) Chứng minh PI = PB. b) Chứng minh IMB = INA. + Cho tam giác nhọn ABC cân tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho BDC = 2BAC (AD không vuông góc với BC). a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn. b) Chứng minh OD là đường phân giác ngoài của BDC và tổng BD + CD bằng hai lần khoảng cách từ A đến đường thẳng OD. + Cho parabol 2 P 2 y x và đường thẳng (d): y ax b. Tìm các hệ số a b biết rằng (d) đi qua điểm 3 A 1 2 và có đúng một điểm chung với (P).

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 - 2021 sở GDĐT Đồng Nai
Thứ Hai ngày 08 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai công bố đề tham khảo môn Toán tuyển sinh lớp 10 THPT năm học 2020 – 2021, giúp học sinh lớp 9 tham khảo, để chuẩn bị cho kỳ thi sắp tới. Đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm 06 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề tham khảo môn Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Cho hình vuông MNPQ có MN = 4a, với 0 < a thuộc R. Tính theo a diện tích xung quanh và thể tích của hình trụ tạo bởi hình vuông MNPQ quay quanh đường thẳng MN. [ads] + Cho phương trình 2x^2 – 6x – 1 = 0 có hai nghiệm là x1 và x2. Tính P = |x1^3 – x2^3|. Lập một phương trình bậc hai một ẩn có hai nghiệm là x1 – 2×2^2 và x2 – 2×1^2. + Một chuyền may chỉ may một loại áo giống nhau và có kế hoạch may xong 4500 áo trong một thời gian quy định, với số áo may được trong mỗi ngày bằng nhau. Để hoàn thành sớm kế hoạch, mỗi ngày chuyền đã may nhiều hơn 400 áo so với số áo phải may trong một ngày theo kế hoạch, vì thế chuyền đã may xong 4500 áo sớm hơn kế hoạch 4 ngày. Tính số áo mỗi ngày chuyền may đã may trong thực tế.
Tuyển tập đề tuyển sinh lớp 10 môn Toán sở GDĐT Hà Nội (từ 1998 đến 2020)
Tài liệu gồm 68 trang, được tổng hợp và biên soạn bởi thầy Trịnh Văn Luân, tuyển tập 21 đề tuyển sinh vào lớp 10 môn Toán sở GD&ĐT Hà Nội (từ năm 1998 đến năm 2020), có đáp án và lời giải chi tiết. Đề số 1. Đề thi vào 10 thành phố Hà Nội năm 1998. Đề số 2. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 1999-2000. Đề số 3. Đề thi vào 10 thành phố Hà Nội năm 2000. Đề số 4. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2001-2002. Đề số 5. Đề thi vào 10 thành phố Hà Nội năm 2002. Đề số 6. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2003-2004. Đề số 7. Đề thi Toán vào lớp 10 năm học 2004-2005, Hà Nội. Đề số 8. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2006. Đề số 9. Đề thi vào lớp 10, Sở GD&ĐT Hà Nội năm 2007. Đề số 10. Đề thi vào 10, Sở GD&ĐT Hà Nội năm 2008. Đề số 11. Đề thi vào lớp 10, Sở GDHN, năm 2009 – 2010. Đề số 12. Đề thi vào lớp 10 – TP Hà Nội năm 2010. Đề số 13. Đề tuyển sinh vào 10 SGD Hà Nội 2011. Đề số 14. Đề thi vào lớp 10, SGD Hà Nội 2012. Đề số 15. Đề thi vào lớp 10, SGD Hà Nội 2013. Đề số 16. Đề thi vào lớp 10, SGD Hà Nội 2014. Đề số 17. Đề thi vào lớp 10, SGD Hà Nội 2015. Đề số 18. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2016-2017. Đề số 19. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2017-2018. Đề số 20. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2018-2019. Đề số 21. Đề thi tuyển sinh vào lớp 10, TP Hà Nội, 2019-2020.
Đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020, nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán sắp tới. Trích dẫn đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang: + Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E. 1. Chứng minh tứ giác BCEM nội tiếp. 2. Tính AM.AE theo R. 3. Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp. [ads] + (Giải bài toán sau bằng cách lập phương trình bậc hai) Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe. + Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2. 1. Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ. 2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi. 3. Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1.
Đề minh họa thi vào 10 môn Toán năm 2020 - 2021 sở GDĐT Thái Nguyên
Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 tại tỉnh Thái Nguyên chuẩn bị cho kỳ thi vượt cấp quan trọng sắp tới. Đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên có dạng tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho đường tròn (O), đường kính AB. Lấy điểm C nằm trên đường tròn (C khác A, C khác B). Các tiếp tuyến của đường tròn (O) tại A và tại C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên đường thẳng AB. I là giao điểm của BD và CH. Chứng minh rằng Cl = HI. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung CD của hai đường tròn (C thuộc (O), D thuộc (O’)). Lấy hai điểm E, F lần lượt thuộc các đường tròn (O), (O’) sao cho ba điểm E, B, F thẳng hàng (B nằm giữa E và F, E khác B, F khác B) và EF song song với CD. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng DA với EF và CA với EF. K là giao điểm của hai đường thẳng EC và FD. Chứng minh rằng: a. Tam giác KCD = tam giác BCD. b. KP = KQ. + Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước?