Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 12 môn Toán năm 2018 2019 sở GD ĐT thành phố Đà Nẵng

Nội dung Đề thi chọn HSG lớp 12 môn Toán năm 2018 2019 sở GD ĐT thành phố Đà Nẵng Bản PDF Sytu chia sẻ đến thầy, cô và các em học sinh khối 12 nội dung đề thi chọn HSG Toán lớp 12 năm 2018 – 2019 sở GD&ĐT thành phố Đà Nẵng, đề có mã đề 169 gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh làm bài thi môn Toán trong 90 phút, kỳ thi nhằm tuyển chọn các em học sinh khối 12 giỏi môn Toán đang học tập tại các trường học trên địa bàn thành phố Đà Nẵng, các em đạt giải chính là tấm gương để học sinh toàn thành phố noi theo, các em cũng sẽ được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi môn Toán cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán lớp 12 năm 2018 – 2019 sở GD&ĐT thành phố Đà Nẵng : + Cho hình trụ (T) có hai hình tròn đáy là (O) và (O’). Xét hình nón (N) có đỉnh O’, đáy là hình tròn (O) và đường sinh hợp với đáy một góc α. Biết tỉ số giữa diện tích xung quanh hình trụ (T) và diện tích xung quanh hình nón (N) bằng 3. Tính số đo góc α. [ads] + Trong không gian Oxyz, cho mặt cầu (S1) có tâm I1(1;0;1), bán kính R1 = 2 và mặt cầu (S2) có tâm I2 = (1;3;5), bán kính R2 = 1. Đường thẳng d thay đổi nhưng luôn tiếp xúc với (S1), (S2) lần lượt tại A và B. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của đoạn AB. Tính P = M.m. + Một cấp số nhân với công bội bằng -2, có số hạng thứ ba bằng 8 và số hạng cuối bằng -1024. Hỏi cấp số nhân đó có bao nhiêu số hạng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT Ninh Bình
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT Ninh Bình Bản PDF Ngày 11 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình với 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình : + Cho tam giác nhọn ABC, đường cao AD (D thuộc BC) và hai điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC. Điểm P chuyển động trên đoạn thẳng MN. Lấy các điểm E, F sao cho EP ⊥ AC, EC ⊥ BC, FP ⊥ AB, FB ⊥ BC. a) Gọi I là giao của EF và AD. Chứng minh rằng I cố định khi P chuyển động trên đoạn MN. b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. Chứng minh rằng đường trung trực của đoạn thẳng BC đi qua trung điểm của đoạn thẳng PQ. [ads] + Cho số nguyên dương n và tập hợp S = {1;2 … n}. Tìm số các tập con của S không chứa hai số nguyên dương liên tiếp. + Xét phương trình: x^n = x^2 + x + 1, n thuộc N, n > 2. a) Chứng minh rằng với mỗi số tự nhiên n lớn hơn 2 phương trình trên có đúng một nghiệm dương duy nhất. b) Gọi xn là nghiệm dương duy nhất của phương trình trên. Tính limxn.
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Quảng Bình Bản PDF Ngày 14 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 khối THPT năm học 2018 – 2019. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Quảng Bình được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 5 bài toán, học sinh làm bài thi trong khoảng thời gian 180 phút, không kể thời gian giám thị coi thi phát đề. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Quảng Bình : + Cho sáu thẻ, mỗi thẻ ghi một trong các số của tập E = {1;2;3;4;6;8} (các thẻ khác nhau ghi các số khác nhau). Rút ngẫu nhiên ba thẻ, tính xác suất để rút được ba thẻ ghi ba số là số đo ba cạnh của một tam giác có góc tù. [ads] + Cho khối tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho SM/MA = 1/2, SN/NB = 2. Gọi (P) là mặt phẳng đi qua hai điểm M, N và song song với đường thẳng SC. a. Trong trường hợp SABC là tứ diện đều cạnh a, xác định và tính theo a diện tích thiết diện của khối tứ diện SABC với mặt phẳng (P). b. Trong trường hợp bất kì, mặt phẳng (P) chia tứ diện SABC thành hai phần. Tính tỉ số thể tích của hai phần đó. + Cho hàm số y = 1/x có đồ thị là đường cong (C) và điểm I(-5/6;5/4). Viết phương trình đường thẳng d đi qua I và cắt (C) tại hai điểm M, N sao cho I là trung điểm của MN. File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 2019 sở GD ĐT Hậu Giang
Nội dung Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 2019 sở GD ĐT Hậu Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hậu Giang; kỳ thi được diễn ra vào ngày 19 tháng 04 năm 2019; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hậu Giang : + Gọi S là tập hợp tất cả các số nguyên dương n thỏa mãn 2 tính chất sau: Các chữ số của n là khác nhau. Các chữ số của n thuộc tập hợp {0; 1; 3; 5; 7}. a) Tính số phần tử của S. b) Chọn ngẫu nhiên một số m thuộc S. Tính xác suất để m có 4 chữ số và m chia hết cho 6. + Cho tứ giác lồi ABCD nội tiếp trong đường tròn O. Gọi I là điểm trên cạnh BD sao cho DAI BAC. a) Chứng minh rằng ADI ACB và ABI ACD. b) Chứng minh rằng ABCD AD BC AC BD. + Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a SA vuông góc với mặt phẳng đáy và SC a 3. Gọi là mặt phẳng đi qua A và vuông góc với SC. Tính theo a diện tích thiết diện của hình chóp S ABCD cắt bởi mặt phẳng.
Đề thi học sinh giỏi lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Nam Định
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2018 2019 sở GD ĐT Nam Định Bản PDF Đề thi học sinh giỏi Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Nam Định gồm 2 bài thi độc lập: Toán trắc nghiệm và Toán tự luận, bài thi Toán trắc nghiệm gồm 40 câu, thời gian làm bài 60 phút, bài thi Toán tự luận gồm 5 câu, thời gian làm bài 75 phút. Kỳ thi nhằm tuyển chọn những em học sinh khối 12 giỏi môn Toán để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác noi theo, đồng thời thành lập đội tuyển học sinh giỏi Toán lớp 12 tỉnh Nam Định tham dự kỳ thi HSG Toán lớp 12 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm học 2018 – 2019 sở GD&ĐT Nam Định : + Cho hai mặt phẳng (P), (Q) song song với nhau cắt khối cầu tâm O, bán kính R tạo thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn, đáy trùng với hình tròn còn lại. Tính khoảng cách giữa (P), (Q) để diện tích xung quanh của hình nón là lớn nhất. [ads] + Cho tập X = {1;2;3;…;8}. Gọi A là tập các số tự nhiên có 8 chữ số đôi một khác nhau được lập từ X. Lấy ngẫu nhiên một số từ tập A. Tính xác suất để số được lấy chia hết cho 2222. + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), đáy ABCD là hình thang vuông tại A và B, AD = 3BC = 3a, AB = a, SA = a√3. Gọi M là trung điểm SD và I thỏa mãn AD = 3AI. a) Tính thể tích của khối tứ diện CDIM. Tính góc giữa hai đường thẳng AM và SC. b) Gọi E, F lần lượt là hình chiếu của A trên các cạnh SB, SC và H là giao điểm của SI và AM. Tính thể tích của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).